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Abstract 

The research literature has paid little attention to the issue of finite population at a higher level in 

hierarchical linear modeling.  In this article, we propose a method to obtain finite-population-

adjusted standard errors of level-1 and level-2 fixed effects in two-level hierarchical linear 

models.  When the finite population at level 2 is incorrectly assumed as being infinite, the 

standard errors of the fixed effects are overestimated, resulting in lower statistical power and 

wider confidence intervals. The impact of ignoring finite population correction is illustrated by 

using both a real data example and a simulation study with a random intercept model and a 

random slope model.  Simulation results indicated that the bias in the unadjusted fixed-effect 

standard errors was substantial when the level-2 sample size exceeded 10% of the level-2 

population size; the bias increased with a larger intraclass correlation, a larger number of clusters, 

and a larger average cluster size.  We also found that the proposed adjustment produced unbiased 

standard errors, particularly when the number of clusters was at least 30 and the average cluster 

size was at least 10.  We encourage researchers to consider the characteristics of the target 

population for their studies and adjust for finite population when appropriate.   

Keywords: hierarchical linear model, finite population, sampling 
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Finite Population Correction for Two-Level Hierarchical Linear Models 

In the past decade, hierarchical linear modeling (HLM) has become a popular choice for 

handling educational and behavioral data with a multilevel structure.  However, the theory 

behind HLM was developed for cases where observations are sampled from a population of 

infinite size, with little attention given to situations where, at some higher level, the sampled 

units are a subset of a finite target population.   

As discussed in Cochran (1977), for sampling without replacement, when the sample size 

exceeds the population size by as little as 5%, finite population corrections (FPCs) need to be 

applied to sample estimates.  That is, supplying realistic information about the population yields 

more accurate inference with higher statistical power and narrower confidence intervals.  

Because applications of FPC to HLM have not been thoroughly discussed in the literature, in the 

present study we proposed an adjustment method for the fixed-effect standard errors (SEs), 

illustrated it with a real data set, and evaluated its performance using simulations. 

Many data sets in the social sciences are collected using sampling schemes other than 

simple random sampling.  Schemes such as cluster sampling or other multistage sampling 

methods result in multilevel data in which, for example, students are nested within schools, 

employees are nested within organizations, and residents are nested within countries.  It is 

usually assumed that the sampled units at a higher level may be considered a random sample of 

some population of interest; otherwise, any known sampling biases need to be adjusted.  

Conventional single-level statistical models (e.g., multiple regression), on the other hand, assume 

that observations are independent, an assumption that is violated for nested data.  As a result, use 

of single-level models that ignores the dependent nature of the data leads to biased (and 

generally underestimated) SEs (e.g., Snijders & Bosker, 2012), and analytical approaches that 
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take into account the dependency among observations, such as HLM, therefore, are needed to 

correctly model data with complex sampling design.   

Finite Populations and Modes of Statistical Inference 

The very concept of a finite population is beyond the scope of what many researchers 

have learned in applied statistics courses.  For example, basic statistics courses traditionally 

present the notion that population parameters are almost always unknowable precisely because 

the population is innumerable.  One possible reason for the lack of references to a finite 

population beyond survey data relates to the popularity of model-based inference for many areas 

of social science research, whose validity depends on a correctly specified model, as opposed to 

design-based inference, whose validity depends on successfully accounting for the sampling 

design.  Another possible reason is that populations for many single-level studies in the social 

sciences are huge and that the negligence of FPCs, therefore, hardly makes a difference.   

Below we briefly discuss the use of FPCs in single-level studies as part of the historical 

debate over model-based versus design-based inference and position the use of FPCs for 

multilevel studies in the context of fixed and random group effects.  Readers interested in a more 

in-depth discussion of model-based and design-based inference are referred to Little (2004), 

Smith (1994), Snijders and Bosker (2012, Chapter 14), and Sterba (2009).  

Model-Based Versus Design-Based Inference 

Historically, statisticians have been split into two camps with regard to modes of 

statistical inference: design-based and model-based (Smith, 1994).  In design-based inference, 

the sampling scheme is generally well defined, and the aim is to make inference about a well-

defined finite population.  For example, if one is interested in the city average of subjective well-

being in City A with a population size of K, one can draw a simple random sample of size k from 
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the list of all citizens in City A and get an unbiased sample mean Y  for the finite population 

(FP) mean: FP

1

K

ii
Y K


  .  When sampling without replacement, the sampling variance of Y

equals the usual expression under an infinite population, S2 / k (where S2 is the variance of Y for 

the finite population), times the finite population correction (FPC) factor, (K – k) / K (Cochran, 

1977, p. 24).  If, instead, the sample is complex (e.g., clustered by schools), it is not possible to 

obtain valid inference on the population characteristics without incorporating those design 

features in the sampling process (e.g., Binder & Roberts, 2003).  

On the other hand, the model-based approach assumes an underlying probability model 

with certain distributional assumptions and parameters that generates the observed sample data, 

and the goal is to make inference about the parameters of the model.  If we consider the previous 

example of finding the population mean of City A using a model-based framework, one simple 

and popular model would be to assume that each observation is generated from a normal 

distribution with mean μ and variance σ2, and that all observations are independent and 

identically distributed.  (Note that μ and σ2, the model parameters, are not necessarily the same 

as μFP and S2 under the finite population, unless the assumed model is an accurate depiction of 

the finite population.)  A usual estimator of the model parameter μ would also be the sample 

mean Y , with the sampling variance of Y  equaling σ2 / K.  Using the model-based framework, 

the validity of the statistical inference depends on how closely the model approximates the real 

data-generating mechanism.  Although random sampling is not explicitly invoked or required in 

a model-based framework (Sterba, 2009), use of a nonrandom sample can result in biased 

estimates if the sampling mechanism is informative but not taken into account (Little, 2004).  

For single-level studies in the behavioral sciences, use of design-based inference and 

FPCs has not been the norm.  One reason is that the population of interest commonly comprises a 
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huge number of people (e.g., citizens in a country) and that the sample for analysis usually 

represents a very small fraction of the population, making the need for FPC minimal.  Another 

appeal to model-based inference is the reference to a hypothetical infinite population from which 

the finite population is drawn.  In previous studies, the hypothetical infinite population is 

commonly denoted as the superpopulation (Cochran, 1977; Gelman & Hill, 2006; Hatley & 

Sielken, 1975; Lohr, 2010). In this paper, we will use the terms superpopulation and infinite 

population interchangeably.  The conceptualization of a superpopulation was motivated by the 

fact that researchers may not be interested only in the current fixed and finite population but in a 

phenomenon that is believed to occur universally.  As an example, consider a researcher 

investigating the relationship between amount of exercise and well-being in a random sample of 

adults in New York City in 2015.  The researcher may not be interested in only generalizing the 

relationship to adults in New York City or to adults in the United States in the year of 2015, but 

may presume that such a relationship is relatively stable (at least for a certain period) and holds 

across countries.  In the latter case, the superpopulation is innumerable and close to infinite, and 

the omission of FPC is usually justifiable even when the sample size is not much smaller than the 

size of the finite population.   

Finally, many of the techniques used in the social sciences such as regression analysis, 

path analysis, and structural equation modeling are developed primarily within the model-based 

framework, whereas design-based inference is more limited to survey data where the target of 

generalization is usually a well-defined finite population.  (As a side note, even if a researcher 

collects data from a whole finite population like a census in a country, it is still possible to use a 

probability model to obtain SEs for the estimates by assuming a superpopulation, whereas with a 

design-based approach there will be no sampling variability, and the SEs will be zero.)    



FINITE POPULATION HLM 7 

Integration of Design-Based and Model-Based Inference 

Despite the discrepancies between the two modes of statistical inference, the recent 

literature has mainly focused on how the two modes can be “reconciled” (Smith, 1994, p. 5). 

Model-based approaches are not valid when important sampling features are not incorporated 

into the model (e.g., Little, 2004), whereas design-based approaches may be less efficient and 

limited to research with a rigorous sampling scheme, which tends to be the exception in many 

areas of the social sciences (Sterba, 2009).   

Two examples of integrating model-based and design-based inference include (a) the 

development of multilevel models to analyze data with clustering structure arisen from cluster 

sampling (cf. Raudenbush & Bryk, 2002); and (b) discussion of how to incorporate other 

sampling features, such as sampling weights for unequal probability of selection, into model-

based methods such as structural equation modeling (e.g., Cai, 2013; Muthén & Satorra, 1995; 

Pfeffermann, Skinner, Holme, Goldstein, & Rasbash, 1998; Stapleton, 2002).  In addition, 

philosophical discussions have focused on the integration of design-based and model-based 

approaches.  For example, Särndal, Swensson, and Wretman (1992) advanced a model-assisted 

design-based framework where a model is hypothesized on the finite population but the 

inference follows the design-based tradition. Little (2004) suggested the use of a model-based 

regression model that actively takes into account design features. And more recently, Sterba 

(2009) proposed a hybrid framework that adjusts model-based estimations for sample design 

features, such as disproportionate selections and stratifications, for both single- and multilevel 

studies.  
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Why Finite Populations and HLM? 

Target of Inference: Finite Population Versus Superpopulation 

Although the omission of FPC in single-level studies may be justified by referencing an 

extremely large finite population or a hypothetical infinite superpopulation, for two-level studies 

the population of interest at level 2 is sometimes fixed and finite.  Indeed, when FPC is used in 

single-level studies, the unit of analysis is usually at a level higher than the person level (or level 

1, which contains the smallest units in the analysis), such as all households in three communities 

in Nicaragua (Brune & Bossert, 2009), all households in one community in Canada (Wilkinson, 

2007), and all hospitals in Korea (Yoon, Chang, Kang, Bae, & Park, 2012).   

Fixed and random group effects. Within the framework of model-based inferences, 

researchers have distinguished between fixed and random group effects for studies with 

observations in groups (see Gelman, 2005, and Gelman & Hill, 2006, for an overview and the 

controversy).  Fixed group effects are commonly invoked when (a) the set of all possible level-2 

“units” are few and countable; (b) when the sample includes all “units” in the data collection 

(e.g., Green & Tukey, 1960); and (c) when the group effects are relatively stable (Searle, Casella, 

& McCulloch, 2006, sections 1.3 and 1.4).  For example, some cross-cultural studies may only 

include two or three countries (e.g., the United States and China), and applied researchers usually 

are only interested in making inferences about the effects for the two or three countries in the 

sample.  Thus, they almost always treat country as a fixed effect by using procedures such as the 

traditional fixed-effect analysis of variance (ANOVA), regression, or multiple-group SEM.  Note 

that in this setup, there are only generalizations for people, not for countries.  On the other hand, 

levels such as “classrooms” may represent a huge collection of units to which a researcher would 

like to generalize, and such levels are usually treated as random; that is, as a random sample of 
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the collection of all possible “classrooms” (or the superpopulation of “classrooms”), and 

random-effect ANOVA or HLM is used.  Therefore, generalization takes place at both level 1 and 

level 2.  

The choice of treating group effects as fixed or random also depends on practical issues.  

First, parameter estimations with random group effects may be biased when the number of 

groups is small (e.g., fewer than 10 or 20; see Hox, 2010), and under such circumstances, it has 

been shown that treating group effects as fixed provide good point and interval estimations for 

level-1 regression coefficients (McNeish & Stapleton, 2016a).  However, treating group effects 

as fixed makes it difficult to examine level-2 predictors when explaining group differences, as 

the level-2 predictors will be completely collinear to the group indicators (e.g., Allison, 2009), 

whereas adding level-2 predictors to the level-2 regression equation is natural for random group 

effects.  

Nevertheless, it is not always clear whether one should treat the group effects as fixed or 

as random (Searle et al., 2006, section 1.4).  Using an example discussed by Gelman and Hill 

(2006), if one collects data from all 50 states in the United States, one can treat the effect of 

states (level 2) as fixed such that the target of inference is only the 50 states within the United 

States, or one can treat them as random such that the results also generalize to existing “states” 

(or comparable units) in other countries or to hypothetical “states” (in the future or in some 

imaginary world). In other words, the target of inference is a superpopulation of “states.”  The 

choice is usually based on the researcher’s judgment. In such an example, Gelman and Hill 

(2006) suggested that it is probably “more meaningful” (p. 461) to generalize to the finite 

population of the 50 U.S. states; however, other researchers may be more interested in the 

superpopulation of “states” across countries.  The point is that it is important to explicitly 
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consider the target of inference rather than simply treating the grouping variable as fixed (e.g., in 

multiple regression with dummy coding) or as random (e.g., in HLM) without justification.   

In some situations, the conventional way of treating the group effects as either fixed or 

random is not ideal.  As noted by Gelman and Hill (2006), this fixed-versus-random dichotomy 

“[left] open the question of what to do with a large but not exhaustive sample” (p. 245).  

Continuing with the U.S. states example, assume that a researcher only collects data from 20 of 

the 50 states.  The researcher would like to generalize the results to the whole nation of the 

United States but not necessarily to other “states” in other countries.  In this case, treating the 

state effects as fixed means that there is no underlying distribution of interest for the 20 states in 

the sample and ignores the sampling error if one wants to also generalize to the remaining 30 U.S. 

states; treating the state effects as random with an infinite level-2 population would overestimate 

the sampling error if one does not want to go beyond the 50 states.  Instead, it is more reasonable 

to treat the effects of the 20 states as a random sample of a finite population for the effects of the 

50 U.S. states and adjust for the level-2 finite population in the same way as in single-level 

studies.  To generalize to the finite population, the sampled states should be considered 

representative of the 50 U.S. states in the sense of being a random sample (Sterba, 2009); if the 

sampled states have known differences that affect the outcome variables from the states that are 

not sampled (e.g., all sampled states are midwest and east coast states), the HLM with FPC 

model is not valid without adjustment for those differences.   

Below we review some research reports applying HLM where the target of generalization 

at level 2 can be considered a finite population.  We then situate the use of FPC with HLM 

between the fixed and random ends of the group effect continuum.   

Multilevel Studies in Which the Level-2 Population Is Finite 
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Multilevel models (including HLMs) are used to address data dependencies when the 

sampling designs generate clustered data.  However, the default model in most multilevel 

statistical software assumes that the sampled units for each level make up a negligible portion of 

the target population (Searle et al., 2006), and researchers using HLM seldom explicitly state 

their target population or justify their use of a superpopulation.  As previously discussed, 

sometimes observations analyzed by HLM come from populations that are finite in size.  Perhaps 

finite population plays the most important role in cross-cultural research involving multiple 

nations (in 2015 there are fewer than 200 countries in the world by most standards).  For instance, 

Peretz and Fried (2012) studied performance appraisal practices adopted by organizations from 

21 countries; in a recent meta-analysis, Rockstuhl, Dulebohn, Ang, and Shore (2012) studied 

leader-member exchange based on samples from 23 countries.  Although these studies used 

HLM, which assumes an infinite population, careful examination may reveal that, in practice, the 

target population in these studies only included a limited number of units.   

But there are other instances, besides cross-cultural research and national survey studies, 

where a finite and enumerable population at the higher level could be of interest.  For example, 

Nielsen (2009) studied 165 out of 269 companies listed on the Swiss Stock Exchange for factors 

affecting top management homogeneity.  Mani, Anita, and Rindfleisch (2007) examined the 

relationship between entry mode and equity level in 4,459 subsidiaries nested within 858 foreign 

direct investment firms in Japan, emphasizing that the sample represented 40 percent of all the 

Japanese subsidiaries.  Other examples include the largest cosmetics companies in the world 

(Armonas, Druteikiene, & Marcinskas, 2010), army companies in Haiti (Bliese, Halverson, 

Schriesheim, 2002), teams in major league baseball (Todd, Crook, & Barilla, 2005), and 

privatized state-owned enterprises in Taiwan (Wu, Su, & Lee, 2008).   
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We argue that in similar situations where one has sampled a nontrivial portion (e.g., > 

10%) of level-2 units from the target level-2 population, one can obtain a more accurate estimate 

of the sampling variability by applying FPC to the SEs obtained under HLM, and thus the 

procedure differs from a conventional random-effect model in the sense that the level-2 

population is finite and well defined.  For a given study, how one treats the group effects should 

be based on one’s judgment (Hatley & Sielken, 1975) and should be determined before carrying 

out the analyses, as such a decision results in different degrees of precision of the parameter 

estimates, as discussed in the next section (see also Gelman, 2005).  The HLM with FPC 

approach is most useful in situations where the population is clearly defined with a known and 

limited size, such as the examples reviewed above.     

Trade-Off Between Using a Finite Population and a Superpopulation 

Because the use of FPCs usually results in smaller SEs and researchers may abuse this 

approach by arbitrarily redefining a given population to deflate the uncertainty of their estimate 

and to obtain statistical significance, it is important to look at the trade-off between smaller SEs 

(by using a finite population) and result generalizability (by using a superpopulation) at level 2 

before going into derivations and Monte Carlo simulations.   

We summarize the different scenarios discussed in this section in Table 1.  The table 

mainly serves to emphasize the role of researchers’ judgment in deciding the target of 

generalization and is by no means an extensive account of all possible analytical approaches.  

Again, the decision to generalize to a finite population or to a superpopulation should be 

explicitly stated and justified during the design phase of the study and before the data analysis.   

Consider a hypothetical study where the sample includes data from participants in 30 

countries collected in 2015 (corresponding to case 3 in Table 1).  The researchers can choose to 
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treat the group effects as (a) random with a superpopulation, (b) random with a finite population, 

or (c) fixed.  Choosing (a) implies that the researchers want to generalize their findings not only 

to all existing countries in 2015, but also to countries that may be established in the following 

decades or centuries, as long as those new “countries” can be considered similar to the existing 

countries. Using this framework, the presumed population will be big, so inferences using the 

usual HLM will be justified, and the validity of generalizations will depend on how similar and 

comparable the new “countries” in the future are to the existing countries in 2015 with regard to 

the phenomenon of interest.  Indeed, many published studies that used HLM on cross-cultural 

data fall into this category (e.g., Davidov, Dülmer, Schlüter, Schmidt, & Meuleman, 2012; Jäckle 

& Wenzelburger, 2015; Rudnev, 2014; Smits & Huijts, 2015).   

On the other hand, the researchers can choose (b) if they decide that their target of 

generalization is all the existing countries in 2015 and potentially a few years before and after 

2015, if the overall number of countries in the population is assumed to be relatively stable.  This 

population will be smaller, and the use of HLM with FPCs will be more appropriate. In contrast, 

using HLM without FPCs in these situations result in overestimated SEs and confidence intervals 

that are too wide.   

Finally, the researchers can choose (c) and carry out a fixed-effect ANOVA or a multiple-

group analysis without multilevel modeling if they simply want to compare only the 30 countries 

present in the data with no intention to generalize the results to all other existing countries.   

Similar to previous studies (e.g., Little, 2004), we considered the use of FPC in HLM as 

incorporating design features into a model-based approach with random group effects.  This is 

analogous to developing multilevel models by modifying the model assumption of independent 

observations in a multiple-regression model to allow for dependent observations within clusters; 



FINITE POPULATION HLM 14 

here we proposed to relax the distributional assumptions in HLM to allow for a finite population 

that is the target of statistical inferences.  To ensure valid inference from the level-2 sample to the 

level-2 population, either the level-2 sample should be representative of the level-2 population or 

the selection bias in the sample should be adjusted.  

Finite Population Basics 

Most standard research methods textbooks treat the issue of finite population only briefly, 

so basic properties in this area may be unfamiliar to readers.  The following discussion provides 

background information in this area, limited to the properties associated with a two-stage cluster 

sampling scheme where, at each level, units are randomly sampled without replacement.  Both 

the level-1 and the level-2 sample sizes are assumed fixed, which means that sample sizes are 

specified before sampling begins, so that the sample size decision is not affected by data 

acquired during the sampling process.  This appears to be a common probability sampling 

method used in studies that employ HLM.  Other sampling plans can give rise to other properties. 

We will first discuss single-level samples from a finite population and apply the same 

concept of finite population correction (FPC) to two-level samples.  For a single-level sample in 

which the sample is selected from a known and countable population, the assumption of an 

infinite population no longer holds.  Consider, for example, a random sample of size k from a 

known population of size K.  As discussed in Thompson (2012), the sample mean Y  of a 

variable Y in general is an unbiased estimator of the population mean.  However, the sampling 

variance of Y  depends on the population size, such that 

2

Var( )
K k

Y
K k

  
  
 

, 
(1) 

where σ2 is the population variance, which can be estimated by the sample variance, 
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 
2

1

2

1

1







k

i

i yy
k

s . 
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Because s2 / k is an unbiased estimator of Var(Y ) when the population is assumed infinite, it 

follows that the unbiased estimator under a finite population is equal to its counterpart under an 

infinite population (s2 / k), times a correction factor.  This correction factor is usually called the 

finite population correction (FPC) factor (Thompson, 2012), where 

( )
FPC 1

K k k

K K


   . (3) 

Previous literature suggested that, for single-level studies, finite population becomes an 

issue when the sample size exceeds even as little as 5% of the population size (Cochran, 1977; 

Hair, Bush, & Ortinau 2000).  Because the sampling variance (i.e., SE2) of least square 

estimators of regression coefficients are functions of s2, the adjusted sampling variance of the 

regression coefficients may be derived by multiplying the estimated s2 value obtained from 

standard software packages (which assumes an infinite population) by the FPC (Cochran, 1977).  

The FPC is always between 0 and 1, and the closer k is to K, the smaller the correction factor.  

This implies that correctly applying the FPC results in more appropriate SEs of the regression 

coefficients, and thus better statistical power and confidence intervals, if the target of 

generalization is finite. 

A typical two-stage cluster sampling procedure involves first sampling J level-2 units (or 

clusters) from a population of size Jpop.  Then, for each level-2 unit j (j = 1, . . . , J), one samples 

nj level-1 units in the jth cluster.  Finally one measures the response variable X for each 

respondent i in cluster j and denotes the response as xij.  If one separates the response xij into its 

cluster mean 
. jx and the individual deviation ( .–ij jx x ), and assumes that the level-1 units are 

distributed similarly across clusters after controlling for the cluster mean, one can see that, at 

level-2, . jX  (the mean of X for the jth cluster) is a sample of size J from a population of size 
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Jpop; at level-1, ( .ij jX X ) has a size of 
1

J

jj
N n


 , and is a sample from a population of size 

Npop.  As discussed in subsequent sections, one way to account for finite populations is to apply 

FPC to the variance components at each level and then express the sampling variance (or SE) of 

the regression coefficients in terms of the adjusted variance components.   

For the two-level HLM, the effect of finite populations on the parameter estimates has not 

been explicitly discussed.  Although FPC procedures have been used in two-stage sampling in 

survey research (e.g., Chromy & Abeyasekera, 2005; Korn & Graubard, 2003), to our knowledge, 

no previous research has discussed how to incorporate FPC into models with random slopes or 

coefficients.  As Little (2004) noted, model-based approaches such as the HLM may be 

inappropriate if the sampling process is ignored, so it is important for researchers to incorporate 

the sampling mechanism in their models.   

Hence, the purpose of the current study was to show how researchers can compute SEs 

adjusted for finite populations and obtain correct inference for the fixed effects from their HLM 

analysis.  As discussed in the previous section, we believe that the use of FPC is more relevant 

and justified at level 2 than at level 1; therefore, we focused more on applying FPC at level 2 to 

HLM analyses.1   

We started with a mathematical derivation for a general two-level model that includes a 

random intercept and multiple random slopes and obtained a matrix expression of the adjusted 

SEs of the fixed effects (which can be solved using the program we provided in Appendix B).  

We then presented closed-form expressions of the adjusted SEs for the special case with no 

random slopes and with equal cluster sizes, and illustrated the impact of ignoring the finite 

population issue on SEs using data from the World Value Survey 1990–1993 (World Values 



FINITE POPULATION HLM 17 

Study Group, 1994).  In addition, we used a simulation study to examine the performance of the 

correction with unbalanced cluster sizes. 

General Two-Level Linear Mixed Model 

We first consider the more general two-level mixed model assuming homogeneous 

variance of random effects in both levels and with q + 1 level-2 random effects (e.g., q = 1 with 

one random slope), in the form 

  y Xγ Zu ε, (4) 

where γ is the vector of fixed effects parameters, X is an N × (p + 1) design matrix with all 1s in 

the first column for the intercept, and the remaining columns containing purely level-1 predictors, 

purely level-2 predictors, and level-1 predictors with level-2 variances, 0 qu u
   u  is a 

random column vector containing the q + 1 level-2 random effects, and ε is an N × 1 matrix of 

level-1 error term.  Z is an N × (q + 1) design matrix for the random effects, with all 1s in the 

first column and the remaining columns are subset of the level-1 variables in X that are 

hypothesized to have a random slope. The two sources for the variability of y are u and ε. 

Assume that at the population level, Cov(u, ε) = 0, E(ε) = 0, Var(ε) = σ2IN, E(u) = 0, and Var(u) 

= G. For example, for a model with one random intercept and one random slope, we have  

00 010

01 111

Var( ) Var
   

     
    

u

u
u G . 

For any model in the form of equation (4), the population variance of y is  

2Var( ) Var( ) Var( ) '    y V Zu ε ZGZ I . (5) 

This suggests that V can be separated into the level-2 contribution, ZGZ , and the level-1 

contribution, σ2I.   
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In the infinite population case, for both the maximum likelihood and the restricted 

maximum likelihood estimation methods, the fixed-effect parameter estimates may be obtained 

by the generalized least squares (GLS) estimator after the variance matrix V has been estimated 

(Monahan, 2008; Snijders & Bosker, 1993).  The vector of estimated fixed effect coefficients, 

denoted as γ̂ , is (Raudenbush & Bryk, 2002; Snijders & Bosker, 1993) 

1 1 1ˆ ( )
   γ XV X XV y , (6) 

with 

1 1ˆVar( ) ( ) γ XV X , (7) 

where X  is the transpose of X.  The SEs are the square roots of the diagonal elements of Var( γ̂ ). 

As shown in Cochran (1977) and Thompson (2012), in two-stage cluster sampling, the 

sampling variance of a linear function of y (e.g., sample mean and the GLS estimator defined in 

[6]) adjusted for finite population may be obtained by applying the corresponding FPC to each 

level (see also Appendix A).  Thus, with FPC applied, the GLS estimator has a covariance matrix 

11*FP )()ˆ(Var 
 XVXγ , (8) 

where 

IZZGIZZGV
*2*2

12

* FPCFPC  , (9) 

G* = FPC2 × G and 2*  = FPC1 × σ2, and FPC2 and FPC1 are the finite population correction 

factors at level 2 and at level 1, respectively. With unbalanced cluster sizes, closed-form 

solutions for FP ˆVar ( )γ  are complex and involve inversion of matrices. Therefore, we provide the 

R code for obtaining the adjusted SEs for the fixed effects in general two-level HLMs in 

Appendix B, which does not assume equal cluster sizes.  

The Special Case for a Random Intercept Model 
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On the other hand, with equal cluster sizes, we can obtain closed-form solutions for 

FP ˆVar ( )γ  both at level 1 and at level 2 with the random intercept model, which can give an 

approximate adjustment for the fixed-effect SEs when the raw data are not available, and also 

provide some insight into what may affect the magnitude of the adjustment.  

In a random intercept model with a balanced design such that nj = n for all j, G is reduced 

to a scalar, as the only random effect at level 2 is the random intercept, with Var(u0) = τ00. For the 

design matrix X, often clustering is also present in the level-1 predictors so that raw (uncentered) 

level-1 predictors can be further decomposed into the group means and the level-1 residuals 

through group-mean centering (see Enders & Tofighi, 2007; Raudenbush & Bryk, 2002).  

Centering is an important issue for multilevel models (Hofmann & Gavin, 1998), and different 

centering approaches can result in different parameter estimates and interpretations (Enders & 

Tofighi, 2007; Kreft, de Leeuw, & Aiken, 1995).  The group means can be used as level-2 

variables when group-mean centering is applied.  Although the adjustment procedure discussed 

in the previous section can accommodate different centering choices, to simplify the discussion, 

in this section we assume that the level-1 predictors have been group-mean centered with the 

group means entered as level-2 predictors and that, as a result, all level-1 predictors have zero 

means and are independent of the level-2 predictors (Enders & Tofighi, 2007).  Enders and 

Tofighi (2007) showed that when group mean centering is used, the design matrix for level-1 

predictors, X(1), and the design matrix for level-2 predictors, X(2), are orthogonal. Thus,  

    



















 








1)2(1)2(

1)1(1)1(1

)2()1(1)2()1(

)(0

0)(
)ˆVar(

XVX

XVX
XXVXXγ ,  
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implying that (1)
γ̂ , the vector of estimated coefficients of level-1 fixed effects, and (2)

γ̂ , the 

vector of estimated coefficients of level-2 fixed effects (including the group means of the level-1 

predictors), are uncorrelated.  

Under the assumption of homogeneity of both σ2 and τ00 for all observations, Snijders 

(2005) showed that 

(1) (1) (1) 1 2ˆVar( ) ( )
 γ X X . (10) 

Applying the correction factor at level 1, the adjusted covariance matrix of (1)
γ̂  is  

 FP (1) (1) (1) 1 2* (1) (1) 1 2 2 (1)

1
ˆ ˆVar ( ) ( ) ( ) FPC( ) = Var( ) FPC        γ X X X X γ . (11) 

Thus,  

FP (1) (1)

1
ˆ ˆ( ) ( ) FPCSE SE γ γ , (12) 

For level-2 predictors, if we denote wj as a vector for the level-2 predictor values for the 

jth cluster, and 1j is a vector of all ones of length nj, we can write 
(2)

jX  as j j
1 W .  Define W as 

the aggregated level-2 predictor matrix with J rows, where the jth row is j
w .  When all clusters 

have the same number of observations, Snijders (2005) showed that 








 
 

n

2

00

1)2( )()ˆVar( WWγ . 
(13) 

Using the FPC for τ00 at level 2, the adjusted covariance matrix of (2)
γ̂  is 

2
FP (2) 1 1

00 2

FPC
ˆVar ( ) ( ) FPC

n

   
    

 
γ WW . 

(14) 

With τ00 and σ2 unknown in the model, they can be replaced with the estimated values, yielding 

2 2*
FP (2) 1 *1

00 2 0000

ˆ ˆFPC
ˆ ˆ ˆVar ( ) ( ) FPC

n n

    
       

 
γ WW  , 

(15) 
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where *

00̂  = FPC2 × 
00̂ . Therefore, one can estimate the adjusted SE as 

2*
*

00
FP (2) (2)

2

00

ˆ
ˆ

ˆ ˆ( ) ( )
ˆ

ˆ

nSE SE

n


 

 


 

γ γ . 

(16) 

Two observations are worth mentioning. First, from equation (12), we see that for a 

purely level-1 predictor, only FPC at level-1 affects the SE, whereas from equation (16), for a 

purely level-2 predictor, both FPC1 and FPC2 affect the SE. Second, from equation (16), if we 

define 2

00
ˆ ˆ ˆ/  , we can write 

FP (2) (2) 2 1
ˆ(1 FPC ) (1 FPC ) /

ˆ ˆ( ) ( ) 1
ˆ 1/

n
SE SE

n

  
  


γ γ . 

(17) 

From equation (17), we see that when both n and ̂  are small (i.e., 
00̂  is small relative to 

2̂ ), 

the adjustment is primarily dominated by FPC1, whereas when n is large, the adjustment is 

primarily dominated by FPC2.  

Real Data Example 

The potential need for FPCs may be better understood through an example using real data.  

Here we use a subset of the data from the World Values Survey 1990–1993 (World Values Study 

Group, 1994).  There were 43 countries in the original data set; however, because the missing 

data rates for some countries were high, we included only 51,673 participants from 38 countries 

for illustrative purposes.  The hypothetical research question was whether an individual’s life 

satisfaction (on a 10-point scale with higher scores reflecting higher satisfaction with life) could 

be predicted by individual-level financial satisfaction (on a 10-point scale with higher scores 

reflecting higher satisfaction with one’s financial situation) and a country-level human rights 

index.  Financial satisfaction was grand-mean centered in the analyses.  Human rights indexes 
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for the period 1990–1993 were obtained from Gupta, Jongman, and Schmid (1994), which 

combined gross human rights violation, political right violation and civil rights violation, with 

higher scores representing a lower level of human rights in a given country (ranging between 

13.39 for the United States and 32.36 for China).  As the unit of human rights index was 

arbitrary, we standardized it before the HLM analysis.   

We used the R package lme4 (Bates, Maechler, Bolker, & Walker, 2014) to analyze a 

two-level model with a random intercept, along with the Satterthwaite’s approximation of the 

degrees of freedom for the t tests for the fixed effect estimates using the R package lmerTest 

(Kuznetsova, Brockhoff, & Christensen, 2016).  Using restricted maximum likelihood estimation, 

the fixed-effect estimate (and the corresponding SEs) for financial satisfaction was 0.365 (SE = 

0.0036), 95% confidence interval [CI] [0.358, 0.372], t(47,008.4) = 98.97, p < .001, and the 

estimated effect for human rights was −0.247 (SE = 0.089), 95% CI [−0.429, −0.066], t(32.12) = 

−2.68, p = .012.  Using the conventional significance test with a .05 significance level, it could 

be concluded that there was evidence of the negative effect of a lack of human rights on life 

satisfaction, as the 95% symmetric confidence interval did not include zero. 

The previous analysis assumed that the 38 countries in the study were sampled from an 

infinite population.  However, it is probably more reasonable to think that the level-2 population, 

which included all countries, was finite.  To be conservative, we used 200 as the population size, 

so 

2

200 38
FPC 0.81

200


  . 

On the other hand, given that the level-1 sample size was only a small subset of the world’s 

population, it would hardly make any difference on the SEs if we applied FPC1 to σ2.  From the 

HLM analyses, we obtained 
00̂  = 0.289 and 2̂  = 3.898.  Using the R code provided in 
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Appendix B, we obtained the adjusted SE for human rights as 0.080, which corresponds to a 

9.9% reduction compared to sampling from an infinite population.  The adjusted test statistic was 

t(32.12) = −2.97, p = .006, 95% CI [−0.411, −0.084].  Therefore, if the target of generalization 

was all existing countries, failure to incorporate the population size could lead to an SE 

overestimated by (1 / 0.901 – 1) × 100% = 11%, resulting in a confidence interval that was too 

wide and an inflated Type II error rate.  By incorporating realistic information about the target 

population for generalization, one can obtain more accurate statistical inference for a finite 

population. 

Besides cross-cultural research, finite population sampling can also be an issue in 

organizational research when the sampled organizations represent a large portion of the target 

population.  For example, Mani et al. (2007) studied entry mode and equity level for 4,459 

Japanese subsidiaries nested within 858 firms—the authors suggested that the sample 

represented 40% of the total number of Japanese subsidiaries.  The population size at the firm 

level was not reported, but for illustration purpose we assume that the 858 firms also represent 

40% of the total number of Japanese firms.  If we substitute FPC1 = .60 and FPC2 = .60 in 

equations (12) and (17), we see that the SEs can be overestimated by 29% for both level-1 and 

level-2 fixed effects, if the targets of generalization are indeed the finite populations’ subsidiaries 

and firms.  As long as the target of generalization at level 2 is finite and enumerable, we can 

similarly apply the adjustment procedures to educational research (e.g., having a large 

representative sample of schools in a state or a country, or a representative sample of all 

accredited higher education programs, as in Hatcher, Wise, & Grus, 2015); health research (e.g., 

Yoon et al., 2012, studied electronic health records in a sample that accounted for 10% of all 

hospitals in Korea); and other areas in social sciences.  
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Monte Carlo Simulations 

The aim of the Monte Carlo simulation study is mainly to examine how the proposed 

correction performs in data sampled from finite populations under conditions with unbalanced 

cluster sizes (i.e., 
jn n  for at least some j).  Two data-generating models were used in the 

present study: a random intercept model and a random slope model.   

Data-Generating Models 

Random intercept model.  As shown in Figure 1a, the first data-generating model had 

one outcome, Y, two level-2 predictors, W1 and W2, and one level-1 predictor, X, with the 

intraclass correlation (ICC; i.e., the ratio of level-2 variance component to the sum of level-1 and 

level-2 variance components) of X being 0 in the population.  All three predictors had only fixed 

effects on Y, and we had the mixed-model equation 

01 1 02 2 10 0ij j j ij j ijy W W X u        . (18) 

The grand intercept γ00 was set to zero without loss of generality.  Both W1 and W2 were 

normally distributed with a mean of 0 and a variance of 1 for simplicity, and the correlation 

between W1 and W2 was set as 
1 2W Wr  = .5.2   The fixed effects γ01 and γ02 were set as 0.2 and 0.45 

to represent small and medium effects, respectively.  Each of the random effects u0j and εij 

followed a normal distribution with a mean of 0.  We fixed Var(u0j) = τ00 to 1, and Var(εij) = σ2 

was determined based on the ICC of y, which equals τ00 / (τ00 + σ2), as described later.  At the 

population level, the variance of Y explained by the two level-2 predictors was 0.22 + 0.452 + 

2(0.2)(0.45)
1 2W Wr = 0.3325; thus, the proportion of explained variance (R2) at level 2 was 0.3325 / 

(1 + 0.3325) = 133 / 533 ≈ .250.  At level 1, X was normally distributed with a mean equal to 2 
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and a variance equal to 1; we kept the level-1 R2 equal to that of level 2; therefore, γ10 was fixed 

to 0.3325σ ≈ .577σ.   

Random slope model.  The random slope model had the same form as the random 

intercept model except that the effect of X on Y varied across clusters.  Specifically, the mixed-

model equation became (see Figure 1b) 

01 1 02 2 10 1 0( )ij j j j ij j ijy W W u X u       , (19) 

where the coefficient for Xij had a group-specific component, u1j, in addition to the mean effect, 

γ10.  In this model, u1j followed a normal distribution with mean equal to 0 and variance of τ11 = 

0.5.  The random effect for the intercept, u0j, and that for the slope, u1j, was bivariate normal with 

a covariance of τ01 = 0.25.  All other parameters were identical to the counterparts in the random 

intercept model.   

Simulation Conditions 

To better relate to previous studies, we referred to Bauer and Sterba (2011), Bliese (1998), 

Maas and Hox (2005), and LaHuis, Hartman, Hakoyama, and Clark (2014) in choosing our 

simulation conditions.  Specifically, we manipulated four design factors: sample-population size 

ratio in level 2 (P = J / Jpop), intraclass correlation (ICC), number of clusters (J), and average 

cluster size (n).  As previous guidelines for single-level studies have suggested that FPC is 

needed when the sample-population size ratio is equal to or larger than .05 (i.e., P ≥ .05), we 

chose P = .05, .10, .25, and .50 in our simulation.  Based on the review by Hedges and Hedberg 

(2007), we set the levels of ICC at .05, .20, and .35, which cover the majority of multilevel data 

structures in the social sciences.  The number of clusters was 20, 30, 50, or 100, which covers the 

ranges used in previous simulation studies.  The average cluster size was 5, 10, 25, which was 

similar to the conditions in Bauer and Sterba and Maas and Hox.  Therefore, there were a total of 
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4 × 3 × 4 × 3 = 144 conditions in the simulation study for each data-generating model (i.e., 

random intercept or random slope).  The simulation conditions are summarized in Table 2. All 

simulations were conducted on Oakley Cluster at the Ohio Supercomputer Center (Ohio 

Supercomputer Center, 1987) 

Data Generation 

All data were generated in R 3.2.3 (R Core Team, 2015) and analyzed using the package 

lme4 (Bates et al., 2014).  For each condition, we randomly generated 500 finite populations of 

level-2 variables, each of size Jpop = J / P.  This ensured that the results did not capitalize on the 

characteristics of a single population.  For the random intercept model, in each finite population 

we generated W1, W2, and u0j from a multivariate normal distribution with a mean of 0 for all 

three variables and forced the generated population to have the exact covariance matrix  

 

1 0.5 0

0.5 1 0

0 0 1

 
 
 
  

,  

so that the model is valid for each population.   

As it is more common and more justifiable to make inference to a finite level-2 

population, to simplify the simulation we assumed that the level-1 variables were sampled from 

an infinite population. There were 500 replications for each of the 500 finite populations. Thus, a 

total of 500 × 500 = 250,000 data sets were generated for each simulation condition.  In each 

replication, a level-2 sample (W1, W2, u0j) of size J was drawn without replacement from the 

generated finite population of size J pop.  To simulate unbalanced cluster sizes, for a given number 

of clusters, there were five groups of cluster sizes, each with J / 5 clusters; the cluster sizes were 

5n , 3 5n , n , 7 5n , and9 5n , respectively.  The level-1 predictor X and the level-1 random 

effect εij were generated as previously specified, and the response variable y was computed 
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according to equation (18) for the random intercept model with the specified parameter values 

for a given condition.  

The procedure for generating data for the random slope model was identical except that 

the level-2 variables were (W1, W2, u0j, u1j) with an exact covariance matrix of  

1 0.5 0 0

0.5 1 0 0

0 0 1 0.25

0 0 0.25 0.5

 
 
 
 
 
 

, 

and y was computed according to equation (19).   

Evaluation Criteria 

For each sample, we fitted the simulated data with the same data-generating model using 

lme4 first with grand-mean centering and then with group-mean centering; for both centering 

methods, we obtained the estimated fixed effects at level 1, 
10̂ , and at level 2, 

01̂  and 02̂ , and 

the corresponding SEs, using restricted maximum likelihood (REML) estimation.  To obtain 

more robust results, we used the pbkrtest package (Halekoh & Højsgaard, 2014) in R to 

obtain the SEs with the Kenward-Roger correction (Kenward & Roger, 1997).  We then 

computed the adjusted standard errors, SEFP, for the three γ̂ s.  We denote the unadjusted 

standard error as SE0 to distinguish it from the adjusted standard error, SEFP.  To evaluate SE0 and 

SEFP, for the jth finite population (j = 1, . . ., 500), we estimated their relative biases by 

comparing them with the empirical standard errors, SDj( γ̂ ) of the three γ̂ s across the 500 

replications, such that the  

ˆ ˆ( ) ( )
ˆRelative Bias ( )

ˆ( )

j i ji
j

j

SE R SD
SE

SD

 
   

 γ

γ
, 
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where R = 500 is the number of replications for each population. For each simulation condition, 

we averaged the relative SE biases across the 500 finite populations.  

Given the large number of effects that can impact relative biases in this study, including 

the main effects of and the interactions among P, J, n , ICC, grand-mean vs. group-mean 

centering, and W1 vs. W2 for level-2 fixed effects, we conducted eight ANOVAs, one for each 

combination of models (random intercept vs. random slope), levels (level-2 vs. level-1 fixed 

effects), and type of SEs (SE0 vs. SEFP), using relative SE bias as the criterion variable.  From the 

analyses we computed the η2 effect size. Our summary of the results mainly focuses on the 

effects associated with the largest η2s.  The ANOVA results may be found in Tables 3 to 10 in the 

supplemental material. Furthermore, to compare the performance of the SEs under an infinite 

level-2 population and a finite level-2 population, we also obtained the relative SE bias for the 

unadjusted SE from 10,000 replications where the data were sampled from an infinite level-2 

population.  We denote this baseline SE as SESP.   

In addition to comparing the relative biases of SE0 and SEFP, we also looked at the root 

mean squared error (RMSE) of the two SE estimators, which also takes into account the 

sampling variability.  For each population, we first computed the mean squared error (MSE) for 

SE0 and SEFP: 

2ˆ ˆ ˆMSE ( ) [ ( ) ( )] /j j i ji
SE SE SD R       γ .  

The RMSE for each simulation condition was obtained by averaging the MSEs for the 500 

populations and taking the square root.  

Results 

Given the large number of simulation conditions, for the interpretation and the graphs in 

Figures 2 to 5, we aggregated the results over design factors with negligible η2 effect sizes, as 
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explained below.  Detailed tables of the percentage relative biases for each condition may be 

found in Table 11 to Table 18 in the supplemental materials.  

Random intercept model. 

Level-2 fixed effects.  The results for the level-2 fixed effect in the random intercept 

model are shown in Figure 2, with boxplots for SEFP and SE0 and SESP represented by dashed 

lines for comparison.  As the main and higher-order interaction effects involving centering and 

the difference between 
01̂  and 02̂  had η2 smaller than .004 for both SEFP and SE0, the 

difference between the relative biases for SE(
01̂ ) and for SE( 02̂ ) and the difference between 

grand-mean and group-mean centering were negligible in all conditions, so their results were 

aggregated.  The effects most strongly associated with variability in relative bias for SE0 were P 

(η2 = .09), ICC (η2 = .01), and P × ICC interaction (η2 = .01).   

As shown in Figure 2, with a finite population, the unadjusted SE0 of the level-2 fixed 

effects became increasingly more positively biased (i.e., overestimated) when the level-2 sample 

accounted for a larger portion of the level-2 population (i.e., larger P).  The relative biases for 

SE0 were all between −2.1% to 1.7% when P = .05, and between −1.3% to 4.4% when P = .10, 

so FPC was not needed when P ≤ .10.  However, the bias became non-ignorable and exceeded 

10% in some conditions with P = .25 and .50.  The degree of bias also increased with a larger n

(η2 = .007), a larger J (η2 = .003), or a larger ICC (η2 = .014).  When P = .25, the relative biases 

for SE0 were beyond 10% for the following conditions: ICC = .20, n  = 25, J ≥ 50, with SE 

biases of 10.0% to 10.8%; ICC = .35, J ≥ 30, and n  = 25, with SE biases of 10.2% to 12.4%; 

ICC = .35, J = 100, n  = 10, with SE bias of 10.6%.  On the other hand, when P = .50, the 

relative bias for SE0 was beyond 10% except for a few conditions with n  ≤ 10, and ICC = .05, 
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and with n  = 5, J = 20, and ICC = .20; otherwise, SE0 was substantially and positively biased by 

10.2% to 32.5%, and the degree of biases increased with a higher ICC, a higher n , or a higher J.   

Using the suggested adjustment helped remove most of the SE bias on the level-2 fixed 

effects.  The effect most strongly associated with the variability in relative bias for SEFP was P 

(η2 = .02).  Figure 2 shows that the relative biases of SEFP were close to those of SESP, the 

baseline, although there were some underestimations for SESP, especially with a larger P.  

Although the formulae tended to overcorrect the SEs and resulted in slightly negatively biased 

SEs in situations with a small J, small n, and small ICC, the relative bias for SEFP was within 

10% for all conditions and was at most −5.3% with ICC ≥ .20, J ≥ 30, and n ≥ 10.  The RMSE 

results also showed that SEFP better estimated the SE of level-2 fixed coefficients, with the ratio 

of RMSE(SE0) to RMSE(SEFP) between 1.01 and 4.16, meaning that in each condition the SEFP 

estimates were closer to the empirical SEs than the SE0 estimates. 

Level-1 fixed effects.  For SE(
10̂ ) of the corresponding level-1 fixed effect, SE0, SEFP, 

and SESP all showed virtually no bias (Figure 3), with relative biases between −0.5% to 0.5% for 

SE0 and between −1.2% to 0.4% for SEFP.  The ratio of RMSE(SE0) to RMSE(SEFP) was between 

0.98 and 1.00, indicating that the two standard error estimators performed very similarly.  

Random slope model.  

Level-2 fixed effects.  The results for the level-2 fixed effect in the random intercept 

model are shown in Figure 4.  As the main and higher-order interaction effects involving 

centering and the difference between 
01̂  and 02̂  all had η2 smaller than .005, the difference 

between the relative biases for SE(
01̂ ) and for SE( 02̂ ) and the difference between grand-mean 

and group-mean centering were negligible in all conditions, so their results were aggregated.  

The effect most strongly associated with variability in relative bias was P (η2 = .04 for SE0, η
2 
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= .02 for SEFP).  As illustrated in Figure 4, in general, the SEFP showed a similar performance to 

the baseline, SESP, although there were some underestimations for SESP, especially with a large P, 

a large ICC, and a small J.  On the other hand, SE0 were positively biased when P increased.  

Similar to the random intercept model, when P = .05 or .10, the need for FPC was minimal, as 

the relative biases of SE0 were within the acceptable range—between −3.9% and 2.5%, whereas 

SEFP had relative biases between −6.0% to 0.05% (compared to −6.2% to 0.8% for SESP).  The 

relative bias of SE0 were within acceptable range and between 2.0% to 7.9% when P = .25.  

When P = .50, SE0 was substantially and positively biased; the relative biases ranged between 

9.3% to 19.9%, and the degree of biases increased with a higher ICC, a higher n , or a higher J. 

For P =.50, using the suggested adjustment helped remove most of the SE bias on the 

level-2 fixed effects, but the formulae tended to overcorrect the SEs and resulted in negatively 

biased SEs in situations with a small J and a high ICC, as shown in Figure 4.  However, the 

underestimation never went below −10% (ranging between −8.1% and −9.4% for J = 20 and ICC 

= .05), and the overcorrection was partly related to the observation that, under conditions with a 

small J, a small n, and a high ICC, the usual SESP also tended to underestimate the true 

variability of sampling from an infinite level-2 population in the random slope model, as shown 

in the dashed lines in Figure 4.  On the other hand, with J ≥ 30 and ICC ≤ .35, the relative bias 

for SEFP was between −7.0% and −4.5%.  The RMSE results also showed that SEFP better 

estimated the SE of level-2 fixed coefficients, with the ratio of RMSE(SE0) to RMSE(SEFP) 

between 1.01 and 2.43, meaning that in all conditions the SEFP estimates were closer to the 

empirical SEs than the SE0 estimates.3 

Level-1 fixed effects.  Unlike in the random intercept model where there was virtually no 

bias on SE(
10̂ ) and SE( 02̂ ) for SE0, SEFP and SESP, there was substantial bias for SE0 in the 
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random slope model for the level-1 fixed effect when finite population was ignored (see Figure 

5), with a pattern similar to that of the level-2 fixed effect in the random slope model but with 

biases of a bigger magnitude.  The effect most strongly associated with the variability in relative 

bias of SE0 was P (η2 = .04).  For the condition with a small sample size (J = 20 and n  = 5) and 

low ICC (ICC = .05), SE0, SEFP and SESP all tended to overestimate the empirical SE of the level-

1 fixed effect, with relative biases between 9.0% and 10.1% when P ≤ .10.  This positive bias 

could be related to the Kenward-Roger correction. The need for FPCs was small when (a) P 

≤ .10 (relative biases for SE0 between 0.6% and 9.9%); (b) P = .25, ICC ≤ .20 or n  ≤ 10 (relative 

biases for SE0 between 4.2% and 10.3%); and (c) P = .50, ICC = .05, J ≥ 30, and n  ≤ 10 (relative 

biases for SE0 between 5.5% and 9.5%).  Otherwise, the degree of biases in SE0 increased with a 

higher ICC and a higher n , and was between 28.6% and 30.0% when P = .50, ICC = .35, and n  

= 25.  

The adjusted SE, SEFP, performed well for estimating SE(
10̂ ).  The effect most strongly 

associated with variability in relative bias of SEFP was ICC (η2 = .03).  Aside from the extreme 

condition with a small sample size and a low ICC where SE0, SEFP and SESP all tended to show 

positive biases, when either J ≥ 30 or n  ≥ 10, the relative biases were between −3.2% and 6.7%, 

within acceptable ranges for all conditions, as shown in Figure 5.  The RMSE results also 

showed that SEFP better estimated the SE of level-2 fixed coefficients, with the ratio of 

RMSE(SE0) to RMSE(SEFP) between 1.02 and 5.02, meaning that in each condition the SEFP 

estimates were closer to the empirical SEs than the SE0 estimates. 

Discussion 

The simulation results indicate that when the assumption of an infinite population at level 

2 is violated, the SEs in HLM without the adjustment are generally positively biased.  Under 
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conditions specified in our simulation study, the unadjusted SEs by the conventional analysis 

became more positively biased and could be as high as 30% as the ICC increased and as the 

level-2 sample size approached the level-2 population size (i.e., when P increased).  For models 

without random slopes, utilizing the proposed adjustment can largely reduce the bias in the SEs 

of level-2 fixed effects, especially when P is large.  For models with random slopes, biases were 

found for both level-1 and level-2 fixed effects.  Again, applying the proposed adjustment 

produced acceptable SEs.   

Our simulations showed that analyzing multilevel data with regular multilevel modeling 

software, which in general assumes an infinite population, resulted in positively biased SEs for 

level-2 fixed effects in the random intercept model and for both level-2 and level-1 fixed effects 

in the random slope model in the majority of the conditions.  As expected, application of finite 

population correction factors did not affect SEs for level-1 fixed effects in the random intercept 

model, as those SEs were not functions of the level-2 variance components; however, finite 

population at level 2 did affect SEs at level 1 in the random slope model, as those SEs were 

functions of the random slope variance at level 2 (Snijders, 2005).  The unadjusted SEs were 

generally acceptable when the number of level-2 units was less than 10% of the level-2 

population size, but were overestimated by more than 10% when the level-2 units corresponded 

to 25% or more of the population.  From equation (17), if one assumes that the average cluster 

size is large relative to the inverse of the ICC and FPC1 = 1, the bias of the unadjusted SE will be 

within 10% when FPC2 ≥ .826, and the bias will be within 5% when FPC2 ≥ .907. Therefore, we 

recommend that researchers pay specific attention when the level-2 sample size accounts for 

more than 17% of the level-2 population size.  If more accurate estimation of the SEs is needed 

(i.e., relative bias < 5%), researchers should adjust for finite population sampling when the level-
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2 sample size accounts for more than 9% of the level-2 population size.  Although these 

recommendations are based on the formula for models using only a random intercept, our 

simulation results showed that they should be applicable to models with random slopes, too.  

In contrast, our results showed that with small cluster size and number of clusters coupled 

with unbalanced cluster sizes and a large ICC, the SEs produced in multilevel models with 

adjustment were biased downward, albeit the downward bias was also present in the normal use 

of HLM assuming a superpopulation model, as evidenced in our simulation results.  The 

downward bias was also observed in previous simulation studies (e.g., Maas & Hox, 2004; 

McNeish & Stapleton, 2016b), which indicates that the asymptotic SEs obtained under maximum 

likelihood or restricted maximum likelihood may not work well for 20 or fewer clusters with 

unbalanced cluster sizes and a relatively large ICC.  

The problem of downward SE biases will be alleviated with the use of t-tests and t-based 

confidence intervals, as the SE was only the scale parameter for the t distribution and the true 

standard deviation of the t distribution equals the scale parameter times  
( 2)  

 for ν > 2, 

where ν is the degrees of freedom for the t distribution.  Therefore, the SE was an underestimate 

of the true sampling variability, especially when ν is small, even when the test maintained the 

nominal Type I error rate.  To verify this, for each replication in the simulation conditions with 

the random slope model, J ≤ 30, n  ≤ 10, and ICC = .35, we constructed 95% confidence 

intervals as .975
ˆ ( )SE t    with both the adjusted and unadjusted SEs, where the degrees of 

freedom ν was obtained by the Kenward-Roger approximation (Kenward & Roger, 1997).  We 

then obtained the empirical coverage rate as the proportion of replications where the confidence 

intervals contained the true population value.  Whereas the coverage rate for some conditions 

using the adjusted SE was below 95%, the lowest was around 93.6% with P = .50, n  ≤ 10, and 
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ICC = .35, which is still acceptable using Bradley’s (1978) criterion for liberal test (empirical 

Type I error rate ≤ .075 corresponding to a coverage rate ≥ 92.5%).  All other conditions showed 

a coverage rate between 94.0% and 96.2% with the adjusted SE (see Tables 23 and 24 in the 

supplemental material, as well as the coverage rates for 80% and 90% confidence in Tables 19 to 

22).   

To opt for the conservative side, we suggest that our proposed adjustment only be applied 

when the number of clusters is at least 30 with 10 or more observations in each cluster, on 

average.  For cross-cultural studies, for which we believe FPC is most needed, the sample size is 

usually large and the bias of the proposed adjustment, therefore, will be negligible.  For studies 

with smaller sample sizes, resampling techniques such as the bootstrap procedure in multilevel 

settings (Goldstein, 2011; van der Leeden, Meijer, & Busing, 2008) may be modified to 

accommodate the finite population and provide more robust standard error estimates. Future 

study is needed to implement the bootstrap procedure under sampling from finite populations 

and evaluate its performance against our proposed adjustment and other methods for obtaining 

standard error estimates in regular HLM.   

Although the notion of an infinite population greatly simplifies the calculations for 

statistical inference for many real-life research topics and allow for the greatest generalizability, 

researchers should be aware that it may not always be the population of interest.  Correction for 

finite population is particularly necessary for areas such as cross-cultural research and 

organizational research on a predefined set of countries or organizations bounded by location and 

time.  In other applications of HLM, the population at level 2 can be assumed to be infinite in 

both a theoretical and a practical sense.  Therefore, the choice between a finite versus an infinite 

population, which should be made at the very early stage of a study, is not trivial.  As a result, we 
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encourage researchers working with multilevel data to carefully consider the nature of their 

research questions and their population, evaluate the potential trade-off between precision and 

generalizability, and carefully decide on their population when planning their studies.   

Finite population correction should be used with caution.  With the introduction of FPC 

in multilevel studies, researchers may feel that they have the option of redefining their 

population to obtain a narrower confidence interval and a smaller statistical significance level.  

Such a practice should be strictly prohibited, as the target population of generalization should be 

carefully chosen during the planning stage of a research study. Regarding the data as a random 

sample from a population cannot be justified if the definition of the population can change.  

Changing the population after conducting the analyses is no different from forming test 

hypotheses after seeing the data.  Neither is acceptable in scientific research practice.   

There are several limitations to this research.  First, in our simulations we have only 

studied grand-mean and group-mean centering.  Although the matrix version of our proposed 

adjustment does not depend on whether the predictors are centered or not, it is possible that in 

finite samples the choice of centering affects the relative biases due to interaction with the 

inherent biases in HLM when sample sizes are small and the cluster sizes are not equal.  Two 

other commonly used strategies are (a) not centering the level-1 predictors and (b) using group-

mean centering for the level-1 predictors with the group means added as level-2 predictors.  As 

discussed in Kreft et al. (1995), a model with no centering is equivalent to a model with grand-

mean centering, so we expect that our results also apply to no centering.  With regard to group-

mean centering with group means added, we do not expect that our results will change regardless 

of whether the group means are added or not. Because we generated the level-1 predictor X in 

our simulation to have intraclass correlations of 0 in the population, the variance of the sample 
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group means of X is likely to be very small and solely due to random sampling. However, as the 

group-mean centering with group means added approach was shown to be superior for testing 

cross-level interactions (Enders & Tofighi, 2007; Hofmann & Gavin, 1998), further research is 

needed to evaluate how the proposed adjustment performs with the different centering options in 

the presence of level-2 variance of level-1 predictors and the presence of cross-level 

interactions.4  

Second, in the simulation we only studied conditions with average cluster sizes of 5, 10, 

and 25, as opposed to bigger cluster sizes that are usually observed in national and cross-cultural 

surveys.  We selected smaller cluster sizes to make the conditions comparable to previous 

simulation studies on multilevel modeling (e.g., Bauer & Sterba, 2011; Cousineau & Laurencelle, 

2016). Both our simulation results and those of Maas and Hox (2004) showed that the impact of 

cluster sizes on the standard error biases of fixed effects were relatively small compared to other 

factors such as ICC and number of clusters. We also conducted additional simulations for 

conditions with P = .50, J = 20, ICC = .35 and with a random slope model, which were shown to 

give the largest downward bias for the adjusted SEs, and manipulated the average cluster sizes to 

50 or 100. The relative biases for the adjusted SE were −9.3% and −8.2%, respectively, for n  = 

50 and n  = 100 at level 2, and 1.0% and 1.9% at level 1, which is comparable to biases for 

conditions with n  = 5, 10, or 25. As a result, we believe that the adjustment will work well for 

larger cluster sizes too, especially when the number of clusters is 30 or larger. However, again, 

further research is needed to verify the performance of the adjusted SEs with larger cluster sizes.  

Third, in this paper we only discussed the adjustment for the fixed-effect standard errors.  

Adjustment for the standard errors of the variance components seems more challenging, and we 

encourage researchers to work out the adjustment in future studies.   
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Fourth, our proposed correction formula only corresponds to one of many possible 

adjustment procedures for handling the issue of making inferences on a finite population at a 

higher level.  A more appealing approach may be to incorporate FPC into the likelihood 

functions for finding the maximum likelihood estimates of the fixed and random components and 

for conducting adjusted likelihood ratio test.   

Fifth, this study only demonstrated how to correct the SEs in two-level random intercept 

and random slope models.  Although the procedure for deriving FPC for models with more than 

two levels or with non-nesting structures (Beretvas, 2011) would be similar to that presented in 

this paper, extra random effects would add complexity to the closed-form approximation of the 

standard errors.  Derivations and evaluations of FPC for more complex multilevel models may 

be considered in future studies.   

Sixth, the discussions in the present study assumed that the level-2 units had equal 

selection probabilities, which is usually also the assumption of multilevel modeling.  In survey 

research, the estimation can take into account sampling weights (e.g., Korn & Graubard, 2003; 

Pfeffermann et al., 1998), and future research can extend the methods used in the present study to 

incorporate sampling weights.   

Finally, although we derived the FPC for both level-1 finite population and level-2 finite 

population, we only demonstrated and evaluated the use of FPC for level 2, as we believed that 

finite population for level 2 would be seen more often in multilevel studies.  However, in some 

situations, FPC for level 1 might also be necessary, and future research should address when and 

how such corrections for level-1 finite population should be applied.   
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Footnotes 

1The use of a single FPC at level 1 relies on the assumption that the sampling fraction of 

each cluster is constant, an assumption usually referred to as equal selection probabilities in 

design-based methods.  Under such an assumption it can be shown that FPC at level 1 is always 

greater than or equal to FPC at level 2, with equality holding only when one selects all available 

level-1 units in the sampled level-2 clusters.  This can be shown as: 

       pop pop

1 pop pop 21 1 1 1
/

J J J J

j j j jj j j j
f N N n n n n f

   
       ,  

where f1 is the sampling fraction at level 1 and f2 is the sampling fraction at level 2, and thus the 

need for FPC at level-1 is relatively negligible.  When the equal selection probabilities 

assumption is violated, one cannot apply a single FPC at level 1, but has to incorporate the 

unequal selection probabilities into the model.  See Stapleton (2002) for a relevant discussion.  

2As the effect of predictor correlations on the estimated standard errors is already 

accounted for in the analyses before applying FPC, we expected that changing the correlation 

between the two predictors would have no effect on the simulation results.  To confirm, we 

generated data with correlations equaling .20, .50, and .80.  We found virtually no difference in 

the results, so only results with correlation equaling .50 are presented.  

3As one anonymous reviewer pointed out, the covariance terms among fixed-effect 

estimators may also be of interest for testing differences in fixed effects.  We obtained simulation 

results on the three covariance terms for the 12 conditions with J = 20, n  = 5, and a random 

slope data generating model, where relative SE biases were largest in magnitude.  After 

converting the biases to correlation metrics (by dividing the biases by the corresponding standard 

errors), we found that biases without applying FPC ranged between −.22 to .01, but after 
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applying FPC they were between −.04 to .05.  As it was obtained using the same procedure as the 

SE, the adjustment should work well for the covariance terms.  

4We ran further simulations with an additional cross-level interaction effect between X 

and W1 with a fixed effect of 0.10 for the four conditions with J = 20, n  = 5, ICC = .05, and a 

random slope data-generating model, where relative SE biases were largest in magnitude in the 

original simulation.  The relative biases were between 6.6% and 9.0% for SE0 and between 3.2% 

and 6.3% for SEFP, somewhere in between the relative biases for purely level-1 predictors and for 

purely level-2 predictors.  This was expected as a cross-level interaction variable can be 

considered a level-1 variable with non-zero level-2 variance.  Therefore, we expect our 

procedure for finite population adjustment to work for cross-level interaction effects, too.  
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Table 1 

Examples of Different Targets of Generalization for Two-Level Data 

Size of Level-2 

Sample Examples 

Targets of Generalization 

at Level 2 

Possible Approaches for 

Analysis 

1. A few level-2 

units 

Comparing U.S. and 

Chinese samples 

No generalizations Treating group effects as 

fixed: Fixed-effect 

ANOVA/dummy 

coding/multiple-group 

analysis 

2. 20 or more 

level-2 units; 

sample size < 

5% of 

population size 

Data from 30 schools in a 

school district, but 

generalizing to all schools 

in the United States 

a. No generalizations a. Treating group effects as 

fixed 

b. Finite population b & c. Regular HLM as 

FPC is negligible c. Infinite superpopulation 

3. 20 or more 

level-2 units; 

sample size > 

5% of 

population size 

Data from 30 countries a. No generalizations a. Treating group effects as 

fixed 

b. Finite population b. HLM with FPC/design-

based methods 

c. Infinite superpopulation c. HLM 

4. All level-2 units 

in a fixed 

level-2 

populationa 

Data from all 50 states in 

the United States 

a. No generalizations for 

the level-2 finite 

population (which is 

the same as the 

sample) 

a. Treating group effects as 

fixed 

b. Infinite 

superpopulation 

b. HLM 

Note. HLM = hierarchical linear modeling.  FPC = finite population correction.  
aAlthough treating group effects as fixed is probably more common in practice, for some 

analyses there are advantages to treating the group effects as a sample from an infinite 

superpopulation and using HLM. See, for example, chapters 21 and 22 of Gelman and Hill 

(2006) for the relevant issues.  
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Table 2 

Summary of Design Factors for the Simulation 

Design Factors Manipulated Levels 

Sample-population ratio (P) .05, .10, .25, .50 

Number of clusters in the sample (J) 20, 30, 50, 100 

Average cluster size ( n ) 5, 10, 25 

Intraclass correlation (ICC) .05, .20, .35 

Model Random intercept model, random slope model 
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(a) 

 

(b) 

Figure 1. Path diagram for the data-generating (a) random intercept model (equation [18], p. 24) 

and (b) random slope model (equation [19], p. 24) in the simulation study.  The data-generating 

model with random slopes has the same form except that the effect of X on Y varies across 

clusters.  
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Figure 2. Percentage relative bias in standard errors for level-2 fixed effects in the random 

intercept model. The dashed line corresponds to the average percentage relative bias for the 

unadjusted standard errors for data with a level-2 superpopulation (i.e., infinite); that is, SESP. J = 

number of clusters. SE-FP = finite population adjusted standard errors for data generated with a 

finite level-2 population. SE0 = unadjusted standard errors for data generated with a finite level-

2 population. 
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Figure 3. Percentage relative bias in standard errors for level-1 fixed effects in the random 

intercept model. The dashed line corresponds to the average percentage relative bias for the 

unadjusted standard errors for data with a level-2 superpopulation (i.e., infinite); that is, SESP. J = 

number of clusters. SE-FP = finite population adjusted standard errors for data generated with a 

finite level-2 population. SE0 = unadjusted standard errors for data generated with a finite level-

2 population. 
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Figure 4. Percentage relative bias in standard errors for level-2 fixed effects in the random slope 

model. The dashed line corresponds to the average percentage relative bias for the unadjusted 

standard errors for data coming a level-2 superpopulation (i.e., infinite); that is, SESP. J = number 

of clusters. SE-FP = finite population adjusted standard errors for data generated with a finite 

level-2 population. SE0 = unadjusted standard errors for data generated with a finite level-2 

population. 
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Figure 5. Percentage relative bias in standard errors for level-1 fixed effects in the random slope 

model. The dashed line corresponds to the average percentage relative bias for the unadjusted 

standard errors for data with a level-2 superpopulation (i.e., infinite); that is, SESP. J = number of 

clusters. SE-FP = finite population adjusted standard errors for data generated with a finite level-

2 population. SE0 = unadjusted standard errors for data generated with a finite level-2 population. 
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Appendix A 

Derivation of Finite Population Correction for Models With a Random Intercept 

To obtain the adjusted SE of the fixed effect estimator, we first recognize that from 

equation (6), γ̂  is a linear transformation of y so that one can write ˆ γ Ay , where

1 1 1( )   A X V X X V , which is assumed known and fixed.  Assuming that there are p predictors 

in X and writing A as a matrix of p row vectors such that 1 p

   A a a , it becomes clear 

that the fixed effect for the ith predictor can be written as i
a y , where ai is a vector of known 

coefficients 
11 12 Ji i i iJna a a    a  of the same length as y.  For simplicity, we dropped the 

subscript i in ai.  Let D be a diagonal matrix such that 
11diag 

JJna a   D  and  a 1 D , 

and by writing y Dy  as the transformed data, it follows that 

    2

1 1

2
2 2 00

2 1..

1
Var( ) Var( ) Var Var Var

Var( ) FPC FPC

jnJ
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 

 
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 
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 

a y 1 Dy 1 y

, 

(A1) 

where 00 00E[Cov( , )] E[Cov( , )] E{E[ Cov( , ) | , ]} E( )ij i j ij ij i j i j ij i j ij i j ij i j ij i jy y a y a y a a y y a a a a             

for i i  and 
2 2E[Var( | )] E[Var( | )] E{E[ Var( | ) | ]} E( )ij ij ij ij ij i j ijy j a y j a y j a a      .  As 

the expected values of the level-1 and level-2 variance components for the transformed data y  

are proportional to τ00 and σ2, it follows that fixed effect sampling variance under sampling from 

a finite population may be obtained by multiplying the variance components by the 

corresponding FPCs in the variance expression when an infinite population is assumed.  
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Appendix B 

R Function Implementing Finite Population Corrections of the Standard Errors 

Equations (8) and (9) suggested that it is possible to obtain a consistent estimate of the 

covariance matrix of the fixed effect coefficients by replacing G*
 by its maximum likelihood 

estimate * *

2
ˆ ˆFPC G G  and 2* 2

1
ˆ ˆFPC   , but it is desirable to implement the correction 

with multilevel software packages.  It would also be desirable if the correction could 

automatically take as input the cluster sizes information from a fitted model.  A simple 

implementation is as follows: 

vcovFPC <- function(object, popsize2 = NULL,  

                    popsize1 = NULL, KR = FALSE) { 

  # Obtained finite-population-adjusted standard errors for fixed effect  

  # estimates for a fitted multilevel model 

  # 

  # Args: 

  #   object: an R object of class merMod as resulting from lmer() 

  #   popsize2: population size at level-2; if NULL, an infinite level-2 

  #             population is assumed 

  #   popsize1: population size at level-1; if NULL, an infinite level-1 

  #             population is assumed 

  #   KR: Whether Kenward-Roger approximation of standard errors should be used, 

  #       which is recommended for small number of clusters and average cluster size.  

  #       Default to FALSE.  

  # 

  # Returns:  

  #   The variance-covariance matrix of the fixed effect estimates, as 

  #   returned by vcov() 

  if (!inherits(object, "merMod")) { 

    stop("Wrong input: Not a fitted model from lmer() with class merMod") 

  } 

  if (length(object@flist) != 1) { 

    stop("Wrong input: Only models with two levels are supported") 

  } 

  if (is.null(popsize1) & is.null(popsize2)) { 

    message("No FPC specified; return results from lme4::vcov.merMod()") 

    return(vcov(object)) 

  } 

  PR <- object@pp 

  N <- unname(object@devcomp$dims["n"]) 

  nclus <- unname(ngrps(object)) 

  if (isTRUE(popsize2 > nclus)) fpc2 <- 1 - nclus / popsize2 

  else { 

    fpc2 <- 1 

    message("No FPC needed at level-2") 

  } 

  if (isTRUE(popsize1 > N)) fpc1 <- 1 - N / popsize1 

  else { 

    fpc1 <- 1 

    message("No FPC needed at level-1") 

  } 

  if (fpc1 == 1 & fpc2 ==1) { 

    message("Return results from lme4::vcov.merMod()") 

    return(vcov(object)) 

  } 

  A <- PR$Lambdat %*% PR$Zt 
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  Astar <- A * sqrt(fpc2) 

  X <- PR$X 

  Astar_X <- Astar %*% X 

  D <- Matrix::Diagonal(nrow(Astar), fpc1) + tcrossprod(Astar) 

  Fisher_I <- (crossprod(X) - crossprod(solve(t(chol(D)), Astar_X))) / fpc1 

  Phi <- solve(Fisher_I) * sigma(object)^2 

  Phi <- as(Phi, "dpoMatrix") 

  nmsX <- colnames(X) 

  dimnames(Phi) <- list(nmsX, nmsX) 

  if (!KR) { 

    return(Phi) 

  } else { 

    if (!require("pbkrtest")) { 

      stop("Please install the `pbkrtest` package for the use of Kenward-Roger correction!") 

    } else { 

      SigmaG <- pbkrtest::get_SigmaG(object, details = 0) 

      vcov_kr <- pbkrtest:::vcovAdj16_internal(Phi, SigmaG, X, details = 0) 

      vcov_kr <- as(Phi, "dpoMatrix") 

      return(vcov_kr) 

    } 

  } 

} 

The above function takes as input a fitted model object, with optional arguments 

popsize2 and popsize1 as the population sizes of level 2 and level 1.  The optional 

argument KR, when set to TRUE, yields standard errors based on the Kenward-Roger 

approximation (Kenward & Roger, 1997) as implemented in the R package pbkrtest ().  The 

output of the above function will output the variance-covariance matrix for the fixed effects 

adjusted for finite population, with the same structure as the output to the function vcov() in 

the lme4 package.  After defining the vcovFPC() function in R, one can, for example, type 

vcovFPC(model1, popsize2 = 200) 

if one has a fitted model model1 and the population size for level 2 is 200.  If one would like to 

get the corresponding SEs instead of the covariance matrix, this can be accomplished by taking 

the square roots of the diagonal elements using 

sqrt(diag(vcovFPC(model1, popsize2 = 200))) 

. 

 


