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Abstract17

Longitudinal measurement invariance—the consistency of measurement in data collected over18

time—is a prerequisite for any meaningful inferences of growth patterns. When one or more items19

measuring the construct of interest show noninvariant measurement properties over time, it leads20

to biased parameter estimates and inferences on the growth parameters. In this paper, I extend21

the recently developed alignment-within-confirmatory factor analysis (AwC) technique to adjust22

for measurement biases for growth models. The proposed AwC method does not require a priori23

knowledge of noninvariant items and the iterative searching of noninvariant items in typical24

longitudinal measurement invariance research. Results of a Monte Carlo simulation study25

comparing AwC with the partial invariance modeling method show that AwC largely reduces26

biases in growth parameter estimates and gives good control of Type I error rates, especially27

when the sample size is at least 1,000. It also outperforms the partial invariance method in28

conditions when all items are noninvariant. However, all methods give biased growth parameter29

estimates when the proportion of noninvariant parameters is over 25%. Based on the simulation30

results, I conclude that AO is a viable alternative to the partial invariance method in growth31

modeling when it is not clear whether longitudinal measurement invariance holds. The current32

paper also demonstrates AwC in an example modeling neuroticism over three time points using a33

public data set, which shows how researchers can compute effect size indices for noninvariance in34

AwC to assess to what degree invariance holds and whether AwC results are trustworthy.35

Keywords: measurement invariance, factorial invariance, longitudinal, alignment36

optimization, growth model37
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Adjusting for Measurement Noninvariance With Alignment in Growth Modeling39

Longitudinal data allow researchers to make inferences on changes across time due to40

natural events, developmental maturation, or carefully designed interventions. In social and41

behavioral sciences, researchers have used growth modeling to examine changes across multiple42

waves of data in alcohol misuse in adolescence (Barnes et al., 2000), correlates of growth of43

vocabulary production during toddlerhood (Pan et al., 2005), and the role of age stereotypes on44

memory performance over time in late adulthood (Levy et al., 2012), to name just a few45

examples. However, for the results of growth modeling to be valid, the operationalization of46

constructs should remain the same across waves; otherwise, any observed differences across time47

can be confounded by incompatible measurements (e.g., Shadish et al., 2001).1 Even when the48

same instrument is being used across time, in the presence of various developmental and cultural49

changes, the measurement properties of an instrument may shift over time, introducing bias to50

the analyses. Therefore, longitudinal measurement invariance, the condition that an instrument51

measures one or more constructs in the same way across time, is required for growth modeling52

results to be meaningful (Grimm et al., 2016; Horn & McArdle, 1992; Widaman et al., 2010).53

Given that measurement in behavioral sciences is usually imprecise, it is not uncommon to54

find violations of longitudinal measurement invariance for psychological instruments. For55

example, Obradović et al. (2007) found that an instrument measuring interpersonal callousness56

did not maintain its measurement properties after four years in a 9-year longitudinal study with a57

group of boys considered “antisocial.” Wu et al. (2009) found that two items in a scale measuring58

life satisfaction did not satisfy longitudinal invariance over six months in two samples of59

university students in Taiwan. Blankson and McArdle (2013) tested longitudinal invariance of six60

cognitive tests in a representative longitudinal study of U.S. participants in their 50s, and their61

results failed to support longitudinal invariance for the mental status factor across a period of 1862

years. Finally, Lommen et al. (2014) found that a posttraumatic stress scale did not maintain the63

same measurement properties before and after deployment in two groups of Dutch soldiers,64

1 See, for example, Curran and Hussong (2009), Petersen et al. (2020), Tyrell et al. (2019), for alternative
approaches to harmonize different instruments intended to measure the same construct across time.
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leading the authors to question whether the same construct was measured before and after65

deployment using the same scale.66

Violations of longitudinal measurement invariance, which I also simply refer to as67

noninvariance, do not mean that research questions on change cannot be answered. At least when68

the degree of violation is mild to moderate, one established strategy is to estimate the degree of69

bias by identifying a partial invariance model, and adjust that bias in a second-order growth70

model that specifies the relations between observed indicators and the latent construct at each71

wave (to be discussed later in this paper; see Ferrer et al., 2008; Widaman et al., 2010). However,72

the identification of a partial invariance model usually requires many iterations of model fitting73

and modifications, which potentially capitalizes on chance (MacCallum et al., 1992) and requires74

substantially more efforts than the growth model itself.75

On the other hand, an alternative approach is to use the newly developed alignment76

optimization (AO) technique (Asparouhov & Muthén, 2014) in multiple-group analysis to come77

up with an approximate invariance model (to be discussed later), which requires fitting only one78

measurement model. More recently, Marsh et al. (2018) extended the alignment method to an79

approach called alignment-within-confirmatory factor analysis (AwC), which incorporates AO into80

a multiple-group regression model to obtain estimations of latent regression parameters adjusted81

for violations of invariance. However, to my knowledge, there has been no previous research82

extending the AO procedure in the context of longitudinal measurement invariance as it is not83

currently implemented in major structural equation modeling (SEM) software.84

The purpose of the current paper is four-folded. First, I propose a simple solution to extend85

AO to longitudinal invariance. Second, I extend the AwC approach to growth modeling to obtain86

adjusted inferences on the growth parameters when there are violations of measurement87

invariance. Third, I report the results of a Monte Carlo simulation study to evaluate the proposed88

method across conditions of sample size, degree of noninvariance, average growth rates, and89

model specification. Finally, I illustrate with an applied example how my proposed method can90

be easily implemented in the R software.91
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Longitudinal Factorial Invariance92

I first define the longitudinal factor model used for the current discussion, which is based on93

the discussion of Meredith and Horn (2001). Specifically, for a study with 𝑇 waves with one94

construct η measured by 𝑝 indicators y = [𝑦1, . . . , 𝑦𝑝] ′, there are 𝑝𝑇 manifest variables, and the95

longitudinal factor model can be defined as96

y𝑡 = 𝛎𝑡 + 𝛌𝑡 η𝑡 + ε𝑡 , (1)

where 𝑡 = 1, . . . , 𝑇 indexes waves, 𝛌 and 𝛎 contains the factor loadings (regression weights; also97

called pattern coefficients) and measurement intercepts of the linear prediction from η, and ε98

contains both the stable, construct-irrelevant specific factors and the random measurement error;99

I denote εs as unique factors in the current study following Grimm et al. (2016).100

It is assumed that ε is independent to η as it does not capture the construct of interest, and101

the components of ε are jointly normal with expected values of 0.2 In addition, researchers102

usually make the local independence assumption so that Var(ε𝑡 ) = Θε𝑡 at a given wave 𝑡 is a103

diagonal matrix of uniqueness with elements θε1, . . . , θε𝑝. On the other hand, because some104

determinants of unique factors are stable across time for the same item, it is common to allow105

unique factor covariances across waves such that Cov(ε 𝑗𝑡 , ε 𝑗𝑡′) ≠ 0 for 𝑡 ≠ 𝑡 ′ and all 𝑗 = 1, . . . , 𝑝.106

Under the above factor model, the measurement parameters linking y and η are 𝛌𝑡s, 𝛎𝑡s,107

and Θ𝑡s. Therefore, strict factorial invariance, meaning measurement invariance under the factor108

model, requires that 𝛌𝑡 = 𝛌, 𝛎𝑡 = 𝛎, and Θ𝑡 = Θ for all 𝑡s (Meredith, 1993). In practice, however,109

such a condition rarely holds, and so researchers commonly follow the popular approach by110

Widaman and Reise (1997) to test four stages of factorial invariance:111

1. Configural invariance (Horn & McArdle, 1992; Horn et al., 1983), where 𝛌𝑡 contains the112

same zero elements across waves; this is automatically satisfied when dealing with a113

2 Whereas it is reasonable to assume that the random measurement error has an expected value of 0, the same
assumption is less reasonable for the specific factors as they may change across time in a developmental process.
However, the means of the specific factors can be absorbed into the measurement intercepts so that the model can
still hold. This is a potential source of intercept noninvariance.
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unidimensional construct;114

2. Weak invariance (also metric/pattern invariance; Millsap, 2011), where 𝛌𝑡 = 𝛌 for all 𝑡s;115

3. Strong invariance (also scalar invariance), where 𝛎𝑡 = 𝛎 for all 𝑡s in addition to weak116

invariance; and117

4. Strict invariance, where Θ𝑡 = Θ for all 𝑡s in addition to strong invariance.118

As shown in Ferrer et al. (2008), at least strong invariance is required to assure that119

observed changes in the means of the manifest variables, which is usually the focus in growth120

modeling, are not confounded with changes in measurement properties of the instrument (i.e.,121

noninvariance). Otherwise, researchers may wrongly conclude that there are meaningful changes122

in the target construct over time, when indeed the changes in observed scores are driven by123

noninvariant loadings and/or intercepts of a few items. Therefore, many scholars (e.g., Grimm124

et al., 2016; Horn & McArdle, 1992; Widaman et al., 2010) have suggested that researchers125

establish factorial invariance of their measurement before performing growth modeling. As126

previously discussed, however, strong invariance generally does not hold, at least not exactly, so127

methods to adjust for noninvariance are needed.128

Partial invariance—traditional method to adjust for noninvariance. The129

traditional method to adjust for noninvariance is to search for a partial strong invariance model130

(e.g., Byrne et al., 1989; Yoon & Millsap, 2007), where invariant parameters are constrained to be131

equal across time while noninvariant parameters are freely estimated. As previously demonstrated132

(e.g., Lai et al., 2021), as long as the proportion of actual noninvariant parameters is not large,133

this approach would work reasonably well. Besides, it provides valuable information regarding134

which items on a scale showed large violations of invariance. Such an approach, however, has135

several drawbacks. First, there is a risk of capitalization on chance as it requires iteratively136

testing parameter constraints, which may lead to an unstable solution (e.g., MacCallum et al.,137

1992). Second, it requires a lot of effort in locating noninvariant parameters. When the number of138

time points, indicators, and/or constructs is large, researchers may need to manually fit tens or139

hundreds of models to arrive at a partial invariance model. This may also lead to lots of140

researcher degrees of freedom that make results potentially not replicable (Chambers, 2019).141
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Third, as demonstrated in Marsh et al. (2018), this specification search approach may lead to142

large bias and imprecision in parameter estimates and inferences when the proportion of143

noninvariant parameters is relatively large (e.g., more than 1/3 or half).144

The above-listed drawbacks are potential reasons that the partial longitudinal invariance145

model is not commonly used in the literature. A quick search of articles published in Child146

Development in 2018–2019 showed 21 articles that used growth modeling in the SEM framework,147

but only one (4.7%) used a second-order growth model that potentially adjusted for measurement148

errors and biases.149

AO and AwC. An alternative approach to the factorial invariance problem is the150

alignment optimization (AO) method proposed by Asparouhov and Muthén (2014) for151

multiple-group structural equation modeling. To understand AO, first note that due to factor152

indeterminacy (Kline, 2016), in the configural invariance model with one latent variable per wave,153

each wave requires one constraint to identify the variance-covariance structure and one constraint154

to identify the mean structure. There are infinitely many possible sets of identification155

constraints, such as (a) fix the latent means and variances to 0 and 1, respectively, for all waves;156

(b) fix the latent mean and variance to 0 and 1, respectively, for the first wave, and constrain the157

loadings and intercepts of the first indicator to be invariant across waves. Both (a) and (b) place158

2 × 𝑇 identification constraints to the model and give the same model fit and the same159

expectation and covariances of y, as do infinitely many other possible sets of constraints.160

However, they correspond to different latent means and variances, factor loadings, and intercepts161

values, and have different implications of factorial invariance.162

AO aims to achieve a set of measurement parameter estimates that retain large163

noninvariances while keeping other parameters approximately invariant across groups. It uses a164

component loss function to “align” the parameters so that the latent variables are on similar165

metrics and are thus comparable. Such an optimization problem is similar to the rotation166

problem in exploratory factor analysis (EFA) aiming to achieve a simple structure that retains167

large loadings while minimizing small loadings. An additional set of constraints to scaling the168

latent variables is to fix the mean and variance of the latent variable to 0 and 1, respectively, for169
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the first group.3170

With 𝑇 sets of measurement parameters and assuming equal sample sizes across waves, the171

component loss function with respect to the parameter differences of a set of aligned loadings and172

intercepts, λ𝑡 ,𝑎 and ν𝑡 ,𝑎, is defined as173

𝐹 =

𝑝∑︁
𝑗=1

∑︁
𝑡1<𝑡2

𝑓 (λ 𝑗𝑡1,𝑎 − λ 𝑗𝑡2,𝑎) +
𝑝∑︁
𝑗=1

∑︁
𝑡1<𝑡2

𝑓 (ν 𝑗𝑡1,𝑎 − ν 𝑗𝑡2,𝑎). (2)

While there could be many options for the loss function 𝑓 for the differences in individual174

parameters across waves, Asparouhov and Muthén (2014) proposed the use of175

𝑓 (𝑥) =
√︃√

𝑥2 + ϵ , (3)

which has been found to work very well for multiple-group analyses with many groups (e.g., 15–60176

groups in Marsh et al., 2018) and with a few groups (e.g., 2–4 groups in Lai et al., 2021), using a177

small ϵ such as 0.01 or 0.001. Readers can find a numerical example in the Appendix, which178

further illustrates the component loss function.179

Much like in EFA where different rotation methods give the same model-implied180

correlation/covariance matrix, when using AO, traditional fit indices in CFA, like the181

root-mean-square error of approximation (RMSEA) and the comparative fit index (CFI), are not182

sensitive to different alignment solutions, as the aligned loadings and intercepts have exactly the183

same fit as the configural model. That said, fit indices should still be informative to other aspects184

of model misspecification in the AwC growth model, such as unique covariances or nonlinear185

growth shape. However, researchers should supplement fit indices with effect size indices for186

noninvariance, such as the 𝑑MACS index discussed in the Simulation Study section, to assess to187

what degree longitudinal factorial invariance holds.188

Currently, AO can only be applied in confirmatory factor analytic (CFA) models without189

any imposed structures on the latent variables or any external covariates or outcome variables.190

3 This was denoted as “fixed” alignment in Asparouhov and Muthén (2014), which is suitable in the current paper
as then the growth parameters can be interpreted as standard deviation unit of the first occasion. Another option is
“random” alignment which sets the average of the means across groups/occasions to zero.
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However, Marsh et al. (2018) proposed a two-step alignment-within-CFA (AwC) procedure that191

greatly enhanced the usefulness of AO. After obtaining the aligned measurement parameters192

using AO in the first step, in the second step of structural modeling, AwC requires fixing one193

loading and one intercept for each latent variable to be equal to the solution in AO so that the194

metric of the latent variables will be similar to that from the AO solution. Thus, parameters195

found to have large differences across groups in AO are kept as such, so that theoretically the196

resulting structural parameter estimates (e.g., latent means and variances) will be less confounded197

with measurement bias. Lai et al. (2021) conducted a simulation study and found that AwC198

performs well in terms of precision and confidence interval (CI) coverage rates for latent path199

coefficients across sample size and degree of noninvariance conditions.200

To my knowledge, however, until now the applications of AO has been limited to201

multiple-group analyses, as the software Mplus (L. K. Muthén & Muthén, 2017), which first202

implemented AO, does not support AO with longitudinal factorial invariance at the time of203

writing. On the other hand, it is straightforward to extend AO to longitudinal measurement204

models by applying the same optimization algorithm on the loadings and intercepts obtained from205

a longitudinal configural invariance model with longitudinal data. After that, AwC can be used to206

adjust for noninvariance using a second-order growth model, as reviewed below.207

Second-Order Growth Model208

Growth modeling aims to model the trajectory of one or more constructs over time. In a209

commonly adopted linear growth model, each individual’s trajectory is described by two210

person-specific parameters: level (initial status) and slope (growth rate). Traditionally, and still a211

popular practice, researchers use first-order growth models (Ferrer et al., 2008), meaning that the212

construct is represented by a single composite score in each wave. Such an approach, however,213

can lead to erroneous estimations and inferences in the presence of (a) measurement unreliability,214

and (b) measurement noninvariance. For (a), it is well known that failure to account for215

unreliability biases structural coefficient estimates (Cole & Preacher, 2014; Kenny, 1979). For (b),216

as demonstrated in Ferrer et al. (2008), strong invariance is needed to establish a meaningful217
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comparison of construct means across time, which is a prerequisite to interpret the growth218

parameters meaningfully.219

Unfortunately, a first-order growth model does not allow for the evaluation and adjustment220

of (a) and (b). To fully capitalize on the capability of structural equation modeling, a221

second-order growth model can instead be used by replacing the single composites with222

longitudinal factor models of multiple indicators. Such a model imposes a growth structure on the223

η variables in (1). Specifically, under the linear SEM framework,224

𝛈𝑖 = Γ𝛏𝑖 + 𝛇𝑖 , (4)

where 𝛏𝑖 contains 𝑟 person-specific growth parameters for the 𝑖th person, Γ is a 𝑇 × 𝑟 matrix225

specifying the contrast codes for modeling time trend, and is usually fixed, and 𝛇𝑖 contains latent226

disturbances of deviations from the predicted trajectory with E(ζ) = 0 for all persons and waves.227

For example, with a linear growth model, there are 𝑟 = 2 person-specific growth parameters, and228

usually229

Γ =



1 0

1 1
...

...

1 𝑇 − 1


Figure 1 shows a path diagram for a linear growth model with four waves. It is commonly230

assumed that conditioning on the growth parameters 𝛏, ηs are normally and independently231

distributed so that Var(𝛈 |𝛏) = Ψ = diag(ψ11, . . . , ψ𝑇𝑇 ). The growth parameters 𝛏 are assumed232

multivariate-normally distributed with E(𝛏) = K and Var(𝛏) = Φ.233

The benefits of a second-order growth model are that it takes into account measurement234

unreliability (Hancock et al., 2001) and, through modeling of partial strong invariance, adjusts for235

violations of longitudinal noninvariance, so that the resulting growth parameter estimates are less236

biased (E. S. Kim & Willson, 2014; Leite, 2007). However, as previously pointed out, the use of a237

partial strong invariance model is only valid when researchers do not mistakenly constrain any238

noninvariant parameters, and in practice, it may not work when the proportion of noninvariance239
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is large (Marsh et al., 2018).240

On the other hand, using AwC, one can model growth while adjusting for noninvariance241

using alignment, which does not require a priori knowledge of noninvariant parameters and an242

iterative process of searching for them. In the following, I first report results from a Monte Carlo243

simulation study evaluating the performance of the AwC approach in terms of parameter bias,244

efficiency, and confidence interval coverage. A step-by-step example of applying AwC using real245

data is then provided.246

Simulation Study247

I report how I determined my design conditions, the number of replications, and all248

evaluative measures of the simulation results. I used the SimDesign package (Chalmers, 2020;249

Chalmers & Adkins, 2020) in R (Version 4.0.3; R Core Team, 2020) to structure the simulation250

studies. The full simulation code can be found in the supplemental materials.251

In the present simulation study, I evaluated the performance of the AwC approach for252

estimating a linear growth model with potential violations of factorial invariance. Based on253

previous simulations (e.g., E. S. Kim & Willson, 2014; M. Kim et al., 2016; Kwok et al., 2007; Liu254

& West, 2018), a typical latent growth model fitted in the literature has four waves, so I set 𝑇 = 4255

in my simulation. The data generating model is shown in Figure 1, following a linear growth256

pattern. Each latent response η is measured by five indicators (not shown in the Figure), which is257

similar to the design in Liu and West (2018) and E. S. Kim and Willson (2014). The258

measurement parameter values used to generate the data are shown in Table 1, and the growth259

parameter values are discussed in the design conditions. I kept the measurement parameters at260

Wave 1 the same across all simulations so that the scale remains constant. At Wave 1, the261

composite reliability is .806. Following Liu and West (2018), I also added a lag 1 autoregressive262

structure for each unique factor across waves with a lag 1 autocorrelation of .20, a lag 2263

autocorrelation of .202, and so forth (i.e., Corr[ε 𝑗𝑡 , ε 𝑗𝑡′ |𝛈] = .20 |𝑡−𝑡′ |).264
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Design Conditions265

The current simulation has a 3 (sample size) × 3 (proportion of noninvariance) × 2 (average266

growth rate) × 2 (model misspecification) design, as described below.267

Sample size (𝑁). From the review by Kwok et al. (2007), the mean sample size of268

longitudinal studies published in Developmental Psychology was 210 (SD = 180), whereas from269

the meta-analysis by Huang (2011) on the relationship between self-concept and academic270

achievement in 39 longitudinal studies, the median sample size was 267. Therefore, I chose 100,271

250, and 1,000 for our sample size conditions for small, medium, and large samples, which was272

similar to the conditions in E. S. Kim and Willson (2014).273

Proportion of noninvariant parameters/items (𝑟ni/𝑝ni). I generated data with274

various 𝑟ni/𝑝ni conditions, where 𝑟ni was defined as the proportion of noninvariant loadings and275

intercepts out of 40 parameters (i.e., 20 loadings + 20 intercepts), and 𝑝ni was the proportion out276

of the five items that were invariant over time. Specifically, I manipulated 𝑟ni to be 0%, 25%, and277

55%, and the corresponding 𝑝ni to be 0, 40%, and 100%. For conditions with278

𝑟ni = 25%/𝑝ni = 40%, I simulated item 5 to have large biases in loadings across all four waves279

(based on the criterion from Nye et al., 2018) and have small biases in intercepts for Waves 2 and280

3, and item 4 to have large biases in intercepts across all four waves (see Table 1). For conditions281

with 𝑟ni = 55%/𝑝ni = 100%, there was a mix of small, medium, and large biases in the intercepts282

and loadings, but more importantly, none of the five items were fully invariant across waves,283

which allows an examination of whether AwC can be a viable option with no invariant items.284

Growth rate (𝜅2). I set the average growth rate per wave, which is the mean of the285

linear slope factor, to be either 0 or 0.25. The level 𝜅2 = 0 was chosen to evaluate Type I error286

rates of the AwC procedure, while 𝜅2 = 0.25 corresponds to a medium growth rate.287

The mean of the intercept factor was set to 0 without loss of generality. The variances of288

the intercept and the slope factor were 0.5 and 0.1, respectively, and the covariance between them289

was set to 0.089, which was consistent with E. S. Kim and Willson (2014). The error variances of290

η1 to η4 were equally set to 0.5. Therefore, at Wave 1, the intraclass correlation—the proportion291
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of variance the intercept factor accounted for—was 0.5. When 𝜅2 = 0.25, the marginal 𝑅2 effect292

size was 0.38 (Johnson, 2014).293

Model misspecification. In practice, researchers rarely have data that perfectly fit the294

data well. Therefore, I had two sets of conditions for model misspecification, where the generated295

data either followed exactly or deviated slightly from the model in equations (1) and (4). For296

conditions with model misspecification, after generating the η values based on equation (4), I297

added a small quadratic trend such that298

η∗𝑖𝑡 = η𝑖𝑡 + (𝑡 − 2.5)2ξ3𝑖 , (5)

where ξ3 is the quadratic growth factor with mean = -0.01 and variance = 0.004. Besides, to299

resemble minor misspecification in the measurement model, I used a procedure similar to300

MacCallum and Tucker (1991) by adding minor unique factor covariances with magnitudes301

between -0.1 and 0.1 to the generated 𝑦 values. The R code for generating the unique factor302

covariances can be found in the supplemental materials. Overall, the misspecification corresponds303

to a population RMSEA of .057.304

Data Generation305

For each simulation condition, I used R to simulate 2,500 data sets, which was sufficient to306

keep the Monte Carlo error to ±2% of the parameter and SE estimates. It was also sufficient to307

keep the margin of error for empirical Type I error rates to 5% ± 0.5%, which satisfied the308

stringent criterion defined by Bradley (1978). For each condition I used the model defined in309

equations (1) and (4) (and equation 5 for conditions with misspecifications) to compute the310

marginal mean vector and covariance matrix of the 20 manifest variables, and used the rmvn()311

function from the mvnfast package (Fasiolo, 2016) in R to simulate multivariate normal data.312

Data analysis. I used lavaan (Version 0.6.7; Rosseel, 2012) for all my analyses. For each313

simulated data set, I fitted (a) AwC, an AwC-growth model, (b) FI, a second-order growth model314

assuming full strong invariance that constrains all loadings and intercepts to be equal across315

waves, and (c) PI, a second-order growth model assuming partial strong invariance with equality316
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constraints only on the unbiased items (except when 𝑟ni = .55). When 𝑟ni = .55/𝑝ni = 1, all317

intercepts were noninvariant, so I placed the intercept equality constraints on the first item, which318

resembled the usual practice (see Shi et al., 2017) while allowing the loadings and the intercepts319

of the other items to be freely estimated without cross-wave constraints. For both FI and PI, the320

models were identified by fixing the loadings of the first item (which is assumed invariant) to 0.8321

and the intercepts of that item to 0 across all waves, so that the scales of the latent variables are322

the same across replications. For AwC, I fixed the loadings and the intercepts of the first item in323

each wave to the values based on the alignment solution. For all methods, I constrained the error324

variance associated with the ηs to be equal (i.e., ψ11 = . . . = ψ44). Maximum likelihood325

estimation for multivariate normal data was used for all methods.326

For each method I obtained point and SE estimates and the 95% Wald CI reported from327

lavaan for the means and variances of the level and slope growth factors. For each parameter θ328

(i.e., means and variances of levels and slopes), the evaluative measures were described below.329

Evaluative Measures330

Bias. The bias was computed as ¯̂
θ − θ, where ¯̂

θ =
∑𝑅

𝑟=1 θ̂𝑟
𝑅

is the mean of the θ̂𝑟 estimates331

across 2,500 replications and θ is the population parameter value.332

Root mean squared error (RMSE). Considering the bias-variance trade-off (e.g.,333

Ledgerwood & Shrout, 2011), a slightly biased estimator may be preferred over a biased estimator334

if the former has a smaller sampling variance. Thus, for each method 𝑀 I computed the RMSE of335

the parameters of interest, defined as336

RMSE( θ̂𝑀 ) =

√︄∑𝑅
𝑟=1( θ̂𝑀𝑟 − θ)2

𝑅
.

A method with a smaller RMSE should be preferred.337

Error rates of 95% CI. To evaluate the CIs based on AwC and PI, I computed the 95%338

Wald CI as θ̂ ± 𝑧.975ŜE (θ), where 𝑧.975 is the quantile in a standard normal distribution339

corresponding to a probability of .975. For each parameter, the empirical error rates were340
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calculated as the proportion of times the constructed CI failed to contain the population341

parameter value (i.e., 1 − coverage rates). A valid 95% CI should have an error rate of 5%. Note342

that when the population value of a parameter is zero, the 95% CI error rate is also the empirical343

Type I error rate of a Wald test with a 5% nominal significance level.344

In addition, to estimate the proportion of parameters that are substantially noninvariant for345

each simulated data set, I computed the 𝑑MACS effect size proposed by Nye and Drasgow (2011).346

The 𝑑MACS effect size represents the standardized mean difference of each item across two groups347

or waves due to differences in loadings and intercepts. When an item is invariant across all348

groups/waves, 𝑑MACS = 0, which is the minimum value. For example, if 𝑑MACS = 0.5 for item 1349

between Wave 1 and Wave 3, it means that the noninvariance in loadings and intercepts of item 1350

across these two waves results in a mean difference of half a standard deviation. In the351

simulation, after obtaining the aligned loadings and intercepts, I computed 𝑑MACS for each of the352

30 pairwise comparisons (5 items, each with 6 contrasts of time points). As Nye et al. (2018)353

suggested a cutoff of 𝑑MACS < .20 for negligible noninvariance, for each simulated sample I354

computed (a) the proportion of pairwise comparisons with 𝑑MACS > .20 and (b) the proportion of355

items (out of five) with at least one 𝑑MACS > .20. Sample R codes for computing 𝑑MACS statistics356

after alignment can be found in the supplemental materials.357

Results358

In some replications there were warnings from lavaan that some estimated variances were359

negative or that the estimates resulted in non-positive definite covariance matrices of the latent or360

observed variables; however, for all replications in all simulation conditions, the fitted models361

converged, so we used all 2,500 replications to summarize the results.362

Mean level (𝜅1). As shown in Figure 2, when all items were invariant (i.e., 𝑟ni = 0), all363

three methods (PI, FI, and AwC) were unbiased when there were no misspecifications, but had a364

small downward bias of about -0.01 when there were misspecifications (i.e., unmodelled quadratic365

trend and unique covariances). The biases were relatively stable across sample size conditions.366

The estimates under PI and AwC were not affected when 𝑟ni = .25/𝑝ni = .40, but the estimates367
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under FI started to show upward bias as it falsely constrained some noninvariant parameters to368

be equal. When 𝑟ni = .55/𝑝ni = 1, PI showed the worst bias (𝑀bias = 0.21) as it anchored on a369

noninvariant item; FI showed large biases (𝑀bias = 0.15), whereas AwC was also biased but to a370

much lesser degree (𝑀bias = 0.04).371

The RMSEs and error rates of 95% CIs for estimating the mean level were shown in372

Table 2. When 𝑟ni = 0 or 0.25, PI was generally more efficient than AwC, but the difference was373

not large. On the other hand, when 𝑟ni = .55/𝑝ni = 1, PI was the least efficient. When 𝑟ni > 0,374

AwC generally had a smaller RMSE than FI, which was largely driven by the bias of FI. For CI375

error rates, AwC generally maintained error rates < 5% when 𝑟ni ≤ .25 even in the presence of376

misspecification, and its error rates (𝑀err = 3.38%) tended to be lower than those based on PI377

(𝑀err = 5.12%); FI had large CI error rates when 𝑟ni and sample size increased as it did not yield378

a consistent estimate. When 𝑟ni = .55/𝑝ni = 1, AwC also had increased CI error rates when379

sample size increased, indicating that it also did not provide a consistent estimate, but the error380

rates were much smaller than those under PI and FI.381

In addition, there were some counterintuitive results as the CI error rates were smaller382

when model misspecification was present and when 𝑟ni = .55/𝑝ni = 1. Upon further investigation,383

such results were likely due to wider sample CIs when data were simulated with misspecification384

(8% wider for PI and 12% wider for AwC).4385

Mean slope (𝜅2). The bias of estimating 𝜅2 is summarized in Figure 3, which depends on386

its population value. For conditions with 𝑟ni = 0 and 𝑟ni = .25/𝑝ni = .40, PI yielded unbiased387

estimates, whereas AwC estimates showed small positive biases when 𝑟ni = .25/𝑝ni = .40 and388

𝜅2 = .25 (up to 0.03, or 12.56%), and FI estimates showed stronger biases (up to 0.07, or 28.54%).389

When 𝑟ni = .55/𝑝ni = 1, both PI (up to 37.03%) and FI (up to 49.68%) showed strong bias390

regardless of sample size; AwC was still biased but to a much lesser degree, with the largest bias391

of 28.21% when 𝑁 = 100, but reduced to 14.80% when 𝑁 = 1,000.392

As shown in Table 3, like 𝜅1, the RMSE pattern was largely driven by the bias pattern.393

Similarly, in terms of CI error rates, AwC yielded CIs with the lowest error rates when 𝑟ni ≤ .25,394

4 This explanation was suggested by an anonymous reviewer.
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regardless of model misspecifications. On the other hand, FI yielded highly inflated error rates395

when 𝑟ni > 0. When 𝑟ni = .55/𝑝ni = 1, AwC had inflated error rates when 𝜅2 = 0 (i.e., Type I396

error rates) of up to 15.04%, but it was much better than FI, which had error rates of up to397

98.44%, and PI, which had error rates of up to 98.76%. When 𝜅1 = .25, the CI error rates for all398

methods were much higher due to the larger biases in the estimates.399

Level variance (𝜙1). Figure 4 shows the relative bias (i.e., bias / 𝜙1) when estimating400

𝜙1. Similar to the results for 𝜅1, when there were no misspecification both PI and AwC yielded401

estimates with little bias for conditions with 𝑟ni ≤ .25, but the misspecification led to an402

underestimation of about 10%. For FI, the underestimation was bigger. When 𝑟ni = .55/𝑝ni = 1,403

all methods suffered larger biases, but AwC yielded estimates with smaller bias (relative bias404

between -21.10% to -8.90%) than FI (relative bias between -28.40% to -11.29%) and PI (relative405

bias between -23.43% to -10.91%).406

The RMSE patterns (Table 2) were similar to the ones for estimating mean level, with AwC407

generally performing better than falsely assuming invariance. For CI error rates, when there were408

no misspecifications, AwC had rates < 5% for all conditions with 𝑟ni ≤ .25, but increased to up to409

12.16% when 𝑟ni = .55/𝑝ni = 1. The error rates of FI increased as a function of 𝑟ni and 𝑁 and410

were much higher than AwC. The error rates of PI increased as a function of 𝑁 when 𝑟ni =411

.55/𝑝ni = 1 and were higher than AwC. When there were misspecifications, all methods in all412

conditions had increased error rates, but the error rates were lowest with AwC.413

Slope variance (𝜙2). Figure 4 shows the relative bias (i.e., bias / 𝜙2) when estimating414

𝜙2. With the current simulation set up, the misspecifications generally resulted in downward415

biases for 𝜙2, whereas increasing 𝑟ni resulted in upward biases for FI and AwC and downward416

biases for PI (when 𝑟ni = .55/𝑝ni = 1), and the relative bias for 𝜙2 was larger than for 𝜙1. It was417

found that AwC had a larger bias than FI when 𝑟ni = .55/𝑝ni = 1 and 𝑁 ≤ 250.418

The RMSE patterns (Table 3) were similar to the ones for other parameters. The CI error419

rates tended to be above 5% for all methods even without misspecifications, and with420

misspecifications, AwC resulted in better control of error rates for all conditions with 𝑟ni ≤ .25.421

When 𝑟ni = .55/𝑝ni = 1, AwC actually had better error rates when there were misspecifications,422
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mainly due to the compensatory effects of misspecifications and noninvariance resulting in smaller423

biases.424

𝑑MACS effect size. It was found that when using the AwC method, the 𝜅1 and 𝜅2425

estimates were acceptable when (a) less than 30% of the pairwise 𝑑MACS was larger than .20 AND426

(b) less than 50% of the items had at least one 𝑑MACS > .20. More details about the analyses with427

the 𝑑MACS effect size can be found in the supplemental material.428

Summary and Remarks429

From the simulation, I found that AwC generally worked well in reducing bias on growth430

parameter estimates due to noninvariance, and performed best in terms of bias when the sample431

size is large (e.g., 1,000). It produces a slight loss of efficiency compared to the correctly specified432

partial invariance model when the proportion of noninvariant parameters is small but performs433

better than picking the wrong anchor item in a partial invariance model when the proportion of434

noninvariant parameters is large. It also generally shows better control on Type I error rates and435

CI coverage rates. Therefore, the proposed AwC growth method is a viable alternative to the436

traditional partial invariance approach. On the other hand, while using a correctly specified437

partial invariance model works well, it leads to the highest bias when it anchors on items with438

large noninvariance; in the current simulation, it performs worse than the strong invariance439

model, as in the latter noninvariance in different directions partially cancels out (see Horn &440

McArdle, 1992).441

One limitation of the simulation is that it does not inform whether the magnitude of442

noninvariance, which was not a manipulated factor, would affect the results.5 A supplemental443

simulation was conducted for the simulation conditions with 𝑟ni = .55/𝑝ni = 1 but with the444

magnitude of noninvariance reduced by half, and the results can be found in the supplemental445

materials (https://github.com/marklhc/awc-growth-supp). In summary, the parameter bias was446

smaller for all methods with a smaller magnitude of noninvariance, but the overall pattern of the447

results was similar. The AwC method still performed better than PI and FI, but all methods448

5 An anonymous reviewer brought up this excellent point.

https://github.com/marklhc/awc-growth-supp
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showed non-negligible biases when estimating the level and slope parameters.449

Another issue of interest is whether the results of AwC depend on which indicator has the450

identification constraints,6 which I here refer to as the reference indicator. Theoretically, because451

the loadings and the intercepts of the reference indicator are fixed to the corresponding values of452

the AO solution, the metric of the latent variables will remain similar, so the latent parameter453

estimates should be the same. However, if one chooses an indicator with weak loadings (i.e., close454

to 0), the metric of the latent variables will be only weakly identified, leading to larger standard455

errors of the latent parameters. In the simulation study, I followed Marsh et al. (2018) to use the456

first indicator as the reference indicator for AwC, which happened to be one with the largest457

loadings. To evaluate the sensitivity of AwC growth model results to choices of reference458

indicator, I reran the simulations using the second indicator (with loadings = .50) as the reference459

indicator. As expected, the parameter bias of AwC remained similar, but the constructed 95% CI460

was generally wider due to larger standard error estimates, leading to lower statistical power.461

Based on these results, a tentative recommendation is to choose an item with large loadings as462

the reference indicator, but future research is needed to determine the optimal choice of reference463

indicator.464

Finally, based on the associations between the 𝑑MACS effect size statistics and the estimated465

mean intercept and slope, I suggest a 50/30/20 rule of thumb for using 𝑑MACS effect size statistics466

to gauge the appropriateness of the AwC method: AwC is trustworthy when (a) no more than 50%467

of items have one or more 𝑑MACS > .20 and (b) no more than 30% of the pairwise 𝑑MACS > .20.468

Applied Example469

The illustrative data come from Waves I (1995–1996), II (2004–2006), and III (2013–2014)470

of the Midlife in the United States project (MIDUS; Brim et al., 2020; Ryff, Almeida, Ayanian,471

Carr, et al., 2017; Ryff, Almeida, Ayanian, Binkley, et al., 2019). For the demonstration, I472

investigated how neuroticism changed over time. At each wave, participants indicated how each of473

the four words: “moody,” “worry,” “nervous,” and “calm,” described them on a 4-point scale (1 =474

6 Both the Associate Editor (Keith Widaman) and an anonymous reviewer brought up this excellent point.
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A lot, 2 = Some, 3 = A little, 4 = Not at all). To make interpretations easier, I reverse-coded the475

first three items so that for all items, a higher score indicated higher neuroticism. For illustration,476

I used a subsample of participants who were 40 years old or below at Wave I; also, to simplify the477

illustration I included only participants with no missing data on all four items across all three478

waves, resulting in a subsample of 833 participants (M age = 33.79). The descriptive statistics of479

each item can be found in the supplemental materials480

(https://github.com/marklhc/awc-growth-supp).481

A longitudinal configural invariance model with three factors was first fitted to the 12482

observed variables (four items across three waves), and unique covariances of the items across483

waves were allowed. To use AO, it is easiest to identify the configural model by fixing the latent484

factor variances to 1 and the latent means to 0.7 The overall χ2 test for this model was485

statistically significant, χ2 (N = 833, df = 39) = 74.49, 𝑝 < .001, indicating lack of exact fit.486

However, the model fit was acceptable using common standards, with CFI = .991, RMSEA =487

.033, 90% CI [.021, .044], and SRMR = .038. The factor loading and intercept estimates before488

alignment are shown in Table 4, which is not very meaningful as the model does not place the489

latent variables on similar metrics across waves. It should be emphasized that like other methods490

for evaluating measurement invariance, one needs to make sure the configural model demonstrates491

acceptable model fit before performing AO.492

Using the loading and intercept estimates from the configural model, I obtained the aligned493

loadings and intercept estimates that minimized the component loss function, using the494

invariance.alignment() function from the sirt package (Robitzsch, 2020b) in R. The aligned495

solutions are also shown in Table 4, together with the aligned factor means and variances. From496

the aligned solution, the latent factor means were estimated to be -0.31 in Wave II and -0.27 in497

Wave III.498

As shown in the simulation results, AwC may result in biased latent parameter estimates499

when the proportion of noninvariant parameters/items is large, as indicated by the 𝑑MACS500

7 Other ways of identifying the model, such as fixing the latent factor variances to 1 and the latent means to 0 for
Wave 1 while constraining the loadings and intercepts of the first item to be equal across waves, give identical
model fit and lead to the same aligned solution.

https://github.com/marklhc/awc-growth-supp
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statistics. In the neuroticism example, there were 12 pairwise comparisons, and two of them501

(16.7%) showed non-negligible 𝑑MACS: “moody” for Wave 1 vs. Wave 3 (0.23), and “calm” for502

Wave 1 vs. Wave 2 (0.21); 50% of the items showed at least one 𝑑MACS > .20. Based on the503

suggested 50/30/20 rule of thumb, I continue with the AwC growth model.504

As shown in the supplemental materials, I fixed the loadings and intercepts of the second505

indicator (“worry”), which had the largest loadings overall, to the values from the AO solution for506

each wave (e.g., 0.79, 0.78, and 0.80 for loadings; 2.62, 2.63, and 2.62 for intercepts), and the507

resulting model fit was exactly the same as the unaligned configural model. I then fit a508

second-order linear latent growth model with the same minimum identification constraints. Based509

on the mean pattern, a linear growth model is probably not a good fit for the data, but I keep it510

for my illustration as the linear growth model as it is widely used. It should also be pointed out511

that other growth shapes can be easily applied, and readers can check out excellent resources by512

Grimm et al. (2016) and Newsom (2015), for example. The AwC growth model had an acceptable513

fit, χ2 (N = 833, df = 40) = 101.70, 𝑝 < .001, CFI = .985, RMSEA = .043, 90% CI [.033, .053],514

and SRMR = .041. Based on the parameter estimates, after adjusting for potential violations of515

factorial invariance, the mean slope estimate was -0.124, 95% CI [-0.166, -0.082], indicating an516

overall decreasing trend of about 0.124 SD in neuroticism per wave.517

To illustrate the sensitivity to different reference indicators, I also fit an AwC growth model518

using “calm” as the reference indicator, which had the lowest loadings (0.32 to 0.36). This AwC519

growth model with alignment had a similar fit, χ2 (N = 833, df = 40) = 81.03, 𝑝 < .001, CFI =520

.990, RMSEA = .035, 90% CI [.024, .046], and SRMR = .039. The mean slope estimate was521

-0.127, which was similar to the estimate when using “worry” as the reference indicator, but the522

95% CI [-0.215, -0.038] was wider.523

The full R code for this example can be found in the supplemental materials524

(https://github.com/marklhc/awc-growth-supp).525

https://github.com/marklhc/awc-growth-supp
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Discussion526

In growth models, for growth parameters to be meaningful, the quantification of the target527

construct must be consistent across time. Under the common factor model with continuous and528

normally distributed indicators, this means that strong factorial invariance needs to hold. When529

strong invariance is violated for some but not all items, falsely assuming invariance and using a530

full strong invariance model results in biased growth parameter (i.e., level and slope) estimates531

and the corresponding between-person variance estimates, as demonstrated in previous studies532

(Ferrer et al., 2008; Liu & West, 2018) and the current simulation. The empirical Type I error533

rates for the mean slope (i.e., CI error rates when the true slope is zero) increase as sample size534

and proportion of noninvariant parameters increase and approach 100% when 𝑁 = 1,000. In other535

words, if noninvariance is not correctly accounted for, researchers are almost guaranteed to falsely536

detect significant growth or changes, when none exists.537

One can also use a second-order growth model with a partial strong invariance model to538

adjust for the noninvariance, which performed well in my simulation when the proportion of539

noninvariant parameters is relatively small (e.g., < 25%) and there are at least some truly540

invariant items. However, two major limitations of this approach is that (a) it requires either prior541

knowledge or an intensive iterative specification search process, which may capitalize on chance542

(MacCallum et al., 1992; Marsh et al., 2018), (b) it may lead to even worse bias when it anchors543

on the wrong item(s) (see Ferrer et al., 2008; Shi et al., 2017), and (c) it cannot be used when all544

items are noninvariant, based on our simulation results. All of them are potential reasons that the545

second-order growth model with adjustment of partial invariance has not been widely adopted.546

In the current paper, I propose adapting the alignment optimization (AO) and the547

alignment-within-CFA (AwC) techniques, originally developed in multiple-group analyses, to548

growth modeling to adjust for longitudinal noninvariance. To my knowledge, the current paper is549

the first in demonstrating how AwC can be applied to longitudinal factor models.550

The AwC growth method has several advantages. First, compared to searching for a partial551

invariance model, which usually requires many iterations of adding/relaxing constraints and552

examining modification indices or other fit indices, AwC only requires fitting a longitudinal553
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configural model, performing alignment optimization, and fitting a second-order growth model.554

Therefore, it presents less burden for applied researchers and avoids problems that different555

researchers may use different cutoffs for freeing invariance constraints. Second, unlike the partial556

invariance approach, the AwC approach does not require identifying anchoring item(s). As557

demonstrated in Marsh et al. (2018) and Shi et al. (2017), and also in my simulation, using558

noninvariant items as anchors can lead to severe bias in structural parameters; by not depending559

on any anchoring items, AwC thus eliminates one potential source of error.560

Researchers should use AwC with caution, however. As the current study show, when the561

proportion of substantially noninvariant parameters (with 𝑑MACS ≥ .20) is large (e.g., > 30%; see562

also B. Muthén & Asparouhov, 2014) or when the proportion of noninvariant items is large (e.g.,563

> 50%), AwC still leads to biased parameter estimates, even though the bias may be smaller than564

using a noninvariant anchor item with a partial invariance model. The observed bias in AwC was565

consistent with Asparouhov and Muthén (2014)’s suggestion that the alignment method may fail566

when the “assumption of approximate measurement invariance is violated” (p. 506), meaning a567

substantial proportion of parameters with medium-to-large noninvariance. Therefore, when using568

AwC, I recommend researchers to report the range of 𝑑MACS values, the proportion of569

𝑑MACS > .20, and the proportion of items with at least one 𝑑MACS > .20, and be skeptical of570

parameter estimates when more than 30% of 𝑑MACS are > .20 or when more than 50% of the items571

have one or more 𝑑MACS > .20. Furthermore, a large proportion of noninvariance may suggest572

that an instrument does not measure constructs that are comparable over time.8 Instead of573

merely applying AwC or partial invariance for statistical adjustment, researchers should carefully574

consider the developmental nature of the target constructs and the content of the items to decide575

whether the instrument can still be meaningfully compared over the time span of the research; it576

is possible that the instrument does not allow for meaningful comparisons over certain period of577

time, and refinement of the instrument or development of a new instrument will be needed.578

8 Both the Associate Editor and an anonymous reviewer brought up this excellent point.
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Limitations and Future Directions579

The current simulation study is not without limitations. First, I only evaluated the linear580

growth models as my goal was mainly to introduce how AwC can work for longitudinal data and581

provide the first piece of evidence of its performance; future research can thus examine alternative582

growth models, such as polynomial growth, piecewise growth, and latent change score models583

(McArdle & Grimm, 2010; McArdle & Hamagami, 2001). Second, it is possible to apply AwC to584

designs with more time points and potentially with intensive longitudinal data with many time585

points (Bolger & Laurenceau, 2013; Hamaker & Wichers, 2017), in which case the advantage of586

AwC may be even bigger as identifying an appropriate partial invariance model is hard with many587

time points. However, the results by Asparouhov and Muthén (2014) and Marsh et al. (2018) on588

independent groups suggested that AO/AwC may produce biased latent parameter estimates589

when the ratio between group sample size and the number of groups is less than 6 (e.g., 90590

individuals per group with 15 groups), so future studies are needed to examine the sample size591

requirement for using AwC with a larger number of time points. Third, as AO can also be applied592

to ordered categorical data (B. Muthén & Asparouhov, 2014), future research can explore593

whether my findings on AwC hold for such data.594

In addition, my simulation only focused on violations of factorial invariance with respect to595

time, but in real research, noninvariance can happen with respect to a combination of time and596

demographic variables (e.g., gender, age; Horn & McArdle, 1992; E. S. Kim & Willson, 2014),597

which has been an important but understudied area of research. The AwC approach is potentially598

useful by considering simultaneous invariance across combinations of time points and599

demographic subgroups, and future research is needed to formalize how AwC can work in such600

designs and evaluate its performance and efficiency. Finally, the current study assumes that the601

sample size is constant across time points, meaning that data are complete or listwise deletion has602

been used; when there is missing at random attrition that can be handled by full-information603

maximum likelihood, one can include weights in the component loss function for alignment to604

reflect different sample sizes across time (see Asparouhov & Muthén, 2014), but future research is605

needed to evaluate the use of such weights in the AwC growth modeling method.606
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Given that the AwC method is relatively new, there are also a lot of research opportunities607

to further optimize it. For example, the component loss function proposed by Asparouhov and608

Muthén (2014) was chosen mostly because of its empirical performance, and alternative functions609

or family of functions may perform better in some models and may have better theoretical610

justifications (see Robitzsch, 2020a). Another direction that can greatly benefit the research611

community is to automate the steps for fitting second-order growth models with AwC so that612

users can just specify one second-order growth model; programs can then automatically provide613

fit indices of both the configural model and the final growth model and the growth parameter614

estimates after adjustment with AwC, as well as effect size indices indicating the degree of615

noninvariance.616
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Table 1
Factor loadings and measurement intercepts for the data generating model across
noninvariance conditions.

𝑟ni = 0 𝑟ni = .25/𝑝ni = .40 𝑟ni = .55/𝑝ni = 1
Parameter All 𝑇s 𝑇1 𝑇2 𝑇3 𝑇4 𝑇1 𝑇2 𝑇3 𝑇4

λ1 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
λ2 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
λ3 0.70 0.70 0.70 0.70 0.70 0.70 0.90 1.00 0.80
λ4 0.65 0.65 0.65 0.65 0.65 0.65 0.60 0.65 0.70
λ5 0.70 0.70 0.80 0.90 1.00 0.70 0.80 0.90 1.00
ν1 0.000 0.000 0.000 0.000 0.000 0.000 0.750 0.500 0.250
ν2 0.500 0.500 0.500 0.500 0.500 0.500 0.750 0.500 1.000
ν3 -0.250 -0.250 -0.250 -0.250 -0.250 -0.250 -0.250 -0.250 -0.250
ν4 0.250 0.250 0.500 0.750 1.000 0.250 0.500 0.750 1.000
ν5 -0.500 -0.500 -0.375 -0.625 -0.500 -0.500 -0.375 -0.625 -0.500

Note. 𝑟ni = proportion of noninvariant parameters. 𝑝ni = proportion of noninvariant items.
λ = factor loadings. ν = measurement intercepts. Noninvariant parameters are bolded.
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Table 2
Root mean squared error (RMSE) and error rates of 95% confidence intervals (CIs) for mean level
(𝜅1) and level variance (𝜙1).

Mean Level (𝜅1) Level Variance (𝜙1)

RMSE CI Error Rate RMSE CI Error Rate

Model 𝑁 𝑟ni/𝑝ni PI FI AwC PI FI AwC PI FI AwC PI FI AwC

C 100 0 0.10 0.10 0.11 4.8 4.8 4.1 0.16 0.16 0.16 6.0 6.0 3.9
.25/.40 0.10 0.12 0.11 4.7 7.2 3.9 0.15 0.17 0.16 6.1 13.8 4.9
.55/1 0.24 0.19 0.12 45.6 29.4 5.4 0.17 0.18 0.18 9.3 15.4 6.4

250 0 0.07 0.07 0.07 4.9 4.9 3.7 0.10 0.10 0.10 5.5 5.5 3.5
.25/.40 0.06 0.08 0.07 3.6 11.0 3.1 0.09 0.11 0.10 4.6 14.5 3.3
.55/1 0.22 0.17 0.08 84.6 62.2 9.4 0.11 0.12 0.12 8.7 15.7 6.8

1000 0 0.03 0.03 0.03 3.8 3.8 3.0 0.05 0.05 0.05 5.2 5.2 3.5
.25/.40 0.03 0.06 0.03 4.0 33.0 3.3 0.05 0.07 0.05 3.8 27.4 2.6
.55/1 0.22 0.16 0.06 100.0 99.5 31.2 0.07 0.08 0.07 17.8 30.1 12.0

M 100 0 0.10 0.10 0.11 5.3 5.3 3.2 0.16 0.16 0.17 10.5 10.5 5.8
.25/.40 0.10 0.11 0.11 5.2 6.1 2.8 0.16 0.19 0.18 9.9 21.7 7.1
.55/1 0.23 0.18 0.11 38.0 27.6 3.1 0.20 0.21 0.20 15.5 25.2 8.5

250 0 0.07 0.07 0.07 5.2 5.2 2.6 0.11 0.11 0.11 10.8 10.8 6.4
.25/.40 0.07 0.07 0.07 4.3 6.9 2.3 0.10 0.15 0.12 9.6 29.6 6.7
.55/1 0.22 0.16 0.07 79.1 57.1 4.4 0.15 0.17 0.14 20.9 36.0 10.2

1000 0 0.03 0.03 0.04 6.5 6.5 3.8 0.07 0.07 0.07 17.5 17.5 11.2
.25/.40 0.04 0.04 0.04 6.0 15.0 3.6 0.07 0.12 0.07 17.5 69.4 13.7
.55/1 0.21 0.15 0.05 100.0 98.7 12.8 0.12 0.14 0.09 55.1 80.7 25.1

Note. 𝑟ni = proportion of noninvariant parameters. 𝑝ni = proportion of noninvariant items. PI =
partial strong invariance model. FI = full strong invariance model. AwC =
alignment-within-confirmatory factor analysis. C = correctly specified model. M = misspecified
model. RMSEs are averaged across conditions of average growth rate. Bolded values indicate error
rates > 7.5%; For conditions with 𝑟ni = .55/𝑝ni = 1, the PI model was misspecified as there were no
noninvariant items.
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Table 3
Root mean squared error (RMSE) and error rates of 95% confidence intervals (CIs) for mean slope (𝜅2)
and slope variance (𝜙2).

Mean Slope (𝜅2) Slope Variance (𝜙2)

RMSE CI Error Rate RMSE CI Error Rate

Model 𝜅2 𝑁 𝑟ni/𝑝ni PI FI AwC PI FI AwC PI FI AwC PI FI AwC

C 0.00 100 0 0.05 0.05 0.05 5.4 5.4 3.6 0.04 0.04 0.04 5.9 5.9 5.5
.25/.40 0.05 0.07 0.06 5.7 12.2 4.6 0.04 0.05 0.05 6.4 7.7 5.7
.55/1 0.09 0.10 0.08 25.3 29.3 9.8 0.04 0.05 0.07 12.8 10.2 7.7

250 0 0.03 0.03 0.03 4.7 4.7 2.5 0.02 0.02 0.03 5.9 5.9 5.4
.25/.40 0.03 0.05 0.03 5.4 19.6 3.6 0.02 0.04 0.03 5.5 13.0 6.9
.55/1 0.08 0.08 0.05 48.1 57.0 9.5 0.03 0.04 0.05 14.0 19.1 15.3

1000 0 0.02 0.02 0.02 4.8 4.8 2.4 0.01 0.01 0.01 5.7 5.7 5.3
.25/.40 0.02 0.04 0.02 5.3 52.5 3.1 0.01 0.03 0.01 5.2 41.8 6.4
.55/1 0.07 0.08 0.03 96.0 98.2 15.0 0.02 0.03 0.03 28.3 57.3 31.6

0.25 100 0 0.05 0.05 0.05 5.3 5.3 4.1 0.04 0.04 0.04 5.8 5.8 5.5
.25/.40 0.05 0.09 0.07 6.0 24.5 7.3 0.04 0.05 0.05 6.4 8.9 5.7
.55/1 0.09 0.13 0.10 24.8 58.1 23.1 0.04 0.06 0.07 12.8 12.0 7.8

250 0 0.03 0.03 0.03 4.3 4.3 3.1 0.02 0.02 0.03 6.0 6.0 5.4
.25/.40 0.03 0.07 0.04 5.3 48.4 6.2 0.02 0.04 0.03 5.5 15.0 6.9
.55/1 0.08 0.13 0.07 46.3 91.7 27.4 0.03 0.04 0.05 14.0 23.4 15.5

1000 0 0.02 0.02 0.02 4.5 4.5 2.8 0.01 0.01 0.01 5.7 5.7 5.2
.25/.40 0.02 0.07 0.02 4.8 96.1 5.6 0.01 0.03 0.01 5.3 49.0 6.4
.55/1 0.07 0.12 0.04 93.8 100.0 43.4 0.02 0.04 0.03 28.3 68.3 32.0

M 0.00 100 0 0.05 0.05 0.05 5.2 5.2 1.8 0.04 0.04 0.04 11.0 11.0 8.0
.25/.40 0.05 0.07 0.06 5.2 14.0 3.4 0.04 0.04 0.05 11.6 7.3 5.9
.55/1 0.11 0.10 0.07 31.4 31.2 7.1 0.05 0.05 0.06 20.2 8.2 5.5

250 0 0.03 0.03 0.03 4.9 4.9 1.4 0.03 0.03 0.03 12.4 12.4 8.9
.25/.40 0.03 0.05 0.03 5.3 23.8 2.2 0.03 0.03 0.03 13.1 7.8 7.2
.55/1 0.10 0.08 0.05 59.0 59.4 7.6 0.04 0.03 0.04 32.0 10.1 7.0

1000 0 0.02 0.02 0.02 4.6 4.6 0.9 0.02 0.02 0.02 24.8 24.8 18.0
.25/.40 0.02 0.04 0.02 4.9 63.9 1.4 0.02 0.02 0.02 25.5 10.6 10.5
.55/1 0.09 0.08 0.03 98.8 98.4 12.8 0.04 0.02 0.02 72.8 21.5 7.3

0.25 100 0 0.05 0.05 0.06 5.0 5.0 2.6 0.04 0.04 0.04 11.2 11.2 8.0
.25/.40 0.05 0.09 0.07 5.0 28.3 6.0 0.04 0.04 0.05 11.5 7.4 5.8
.55/1 0.12 0.14 0.10 33.8 60.5 18.7 0.05 0.05 0.06 20.2 9.0 5.5

250 0 0.03 0.03 0.03 4.6 4.6 1.6 0.03 0.03 0.03 12.4 12.4 8.8
.25/.40 0.03 0.08 0.04 5.0 55.8 5.6 0.03 0.03 0.03 13.2 8.5 7.2
.55/1 0.10 0.13 0.07 62.9 92.9 23.2 0.04 0.04 0.04 32.0 12.4 7.1

1000 0 0.02 0.02 0.02 4.4 4.4 1.8 0.02 0.02 0.02 24.8 24.8 18.0
.25/.40 0.02 0.07 0.02 4.8 98.1 4.8 0.02 0.02 0.02 25.5 13.6 10.6
.55/1 0.09 0.12 0.05 99.2 100.0 42.3 0.04 0.02 0.02 72.8 32.0 7.4

Note. 𝑟ni = proportion of noninvariant parameters. 𝑝ni = proportion of noninvariant items. PI = partial
strong invariance model. FI = full strong invariance model. AwC = alignment-within-confirmatory factor
analysis. C = correctly specified model. M = misspecified model. Bolded values indicate error rates
> 7.5%; italic values indicate error rates < 2.5%. For conditions with 𝑟ni = .55/𝑝ni = 1, the PI model was
misspecified as there were no noninvariant items.
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Table 4
Factor loadings, measurement intercepts, and latent means and variances of
the longitudinal configural model of the applied example before and after
alignment optimization.

Loading/Variance Intercept/Mean
Variable Pre-aligned Aligned Pre-aligned Aligned
Measurement Parameters

moody1 0.44 0.44 2.40 2.40
moody2 0.41 0.45 2.18 2.32
moody3 0.43 0.46 2.09 2.21
worry1 0.79 0.79 2.62 2.62
worry2 0.73 0.80 2.38 2.63
worry3 0.72 0.77 2.41 2.62
nervous1 0.77 0.77 2.24 2.24
nervous2 0.68 0.74 1.98 2.21
nervous3 0.71 0.75 2.05 2.25
calm1 0.32 0.32 2.11 2.11
calm2 0.33 0.36 2.17 2.28
calm3 0.34 0.36 2.14 2.24

Structural Parameters
η1 1.00 1.00 0.00 0.00
η2 1.00 0.92 0.00 -0.31
η3 1.00 0.94 0.00 -0.27

Note. The items moody, worry, and nervous were reversely coded.
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Figure 1 . Data generating model for the simulation study. Each of the η variables was measured
by five indicators, which were omitted from the diagram.
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Figure 2 . Bias for estimating mean level (𝜅1). PI = partial strong invariance model. FI = full
strong invariance model. AwC = alignment-within-confirmatory factor analysis. For conditions
with 𝑟ni = .55/𝑝ni = 1, the PI model was misspecified as there were no noninvariant items.
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Figure 3 . Bias for estimating mean slope (𝜅2). PI = partial strong invariance model. FI = full
strong invariance model. AwC = alignment-within-confirmatory factor analysis. For conditions
with 𝑟ni = .55/𝑝ni = 1, the PI model was misspecified as there were no noninvariant items.
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Figure 4 . Percentage relative bias for estimating level and slope variance (𝜙1 and 𝜙2). PI = partial
strong invariance model. FI = full strong invariance model. AwC = alignment-within-confirmatory
factor analysis. For conditions with 𝑟ni = .55/𝑝ni = 1, the PI model was misspecified as there were
no noninvariant items.
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Appendix

A Heuristic Example of Alignment Optimization (AO)

As an example of applying the AO loss function defined in equations (2) and (3), consider a796

scenario where three items are used to measure a latent variable across two waves (𝑡1 = 1 and 𝑡2797

= 2). Assume that for the first wave, one already knows α1 = 0, ψ1 = 1, 𝛌1 = [0.9, 0.8, 0.7], and798

𝛎1 = [0, 0, 0]. Because of factor indeterminacy, for the second wave, there are infinitely many799

possible sets of parameter estimates that correspond to the same model-implied means and800

covariances for the observed variables. For example, consider the following two sets of parameters801

for the second wave:802

• Model 0 (𝑀0): α2,0 = 0, ψ2,0 = 1, 𝛌2,0 = [0.81, 0.72, .45], 𝛎2,0 = [0.45, 0.4, 0.4]803

• Model 1 (𝑀1): α2,1 = 0.5, ψ2,1 = 0.81, 𝛌2,1 = [0.9, 0.8, 0.5], 𝛎2,1 = [0, 0, 0.15]804

Under both 𝑀0 and 𝑀1, the latent variable accounts for variances of 0.6561, 0.5184, and805

0.2025 for the three items (using λ2ψ), and the mean of the three items are 0.45, 0.4, and 0.4806

(using ν + λα), so they are equivalent models, and there are infinitely many more combinations of807

α2, ψ2, 𝛌2, and 𝛎2 that are equivalent. However, 𝑀0 and 𝑀1 give different implications with808

respect to factorial invariance, as 𝑀0 implies all items are noninvariant, whereas 𝑀1 implies only809

item 3 is noninvariant. Because AO aims to identify a set of parameters, among all the equivalent810

models, that has very few large noninvariant parameters and many approximately invariant811

parameters, it should prefer 𝑀1 over 𝑀0.812

Let’s go through equations (2) and (3) to get the component loss (𝐹) values for the813

parameter differences of 𝑀0 and 𝑀1, with ϵ = .001. For the loading of the first indicator in 𝑀0,814

𝑓 (λ11,0 − λ12,0) = 𝑓 (0.9 − 0.81) = 𝑓 (0.09) =
√︃√︁

(0.09)2 + .001 = 0.31,

and under 𝑀1,815

𝑓 (λ11,1 − λ12,1) = 𝑓 (0.9 − 0.9) = 𝑓 (0) =
√︃√

02 + .001 = 0.18.

One can verify that the loss values for the loadings and intercepts under 𝑀0 are 0.31, 0.29, 0.50,816
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0.67, 0.63, 0.63, and those under 𝑀1 are 0.18, 0.18, 0.45, 0.18, 0.18, 0.39. Summing the loss values817

as in equation (2), one gets 𝐹0 = 3.04 and 𝐹1 = 1.55, so 𝑀1 is indeed preferred in AO over 𝑀0.818

This heuristic example only considers two sets of parameter values, but the AO algorithm819

considers all possible sets and identifies the one, denoted as 𝑀𝑎, that gives the smallest 𝐹.820
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