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Abstract

Measurement invariance is the condition that an instrument measures a target construct

in the same way across subgroups, settings, and time. In psychological measurement,

usually only partial, but not full, invariance is achieved, which potentially biases

subsequent parameter estimations and statistical inferences. Although existing literature

shows that a correctly specified partial invariance model can remove such biases, it ignores

the model uncertainty in the specification search step: flagging the wrong items may lead

to additional bias and variability in subsequent inferences. On the other hand, several new

approaches, including Bayesian approximate invariance and alignment optimization

methods, have been proposed; these methods use an approximate invariance model to

adjust for partial measurement invariance without the need to directly identify

noninvariant items. However, there has been limited research on these methods in

situations with a small number of groups. In this paper, we conducted three systematic

simulation studies to compare five methods for adjusting partial invariance. While

specification search performed reasonably well when the proportion of noninvariant

parameters was no more than 1/3, alignment optimization overall performed best across

conditions in terms of efficiency of parameter estimates, confidence interval coverage, and

Type I error rates. In addition, the Bayesian version of alignment optimization performed

best for estimating latent means and variances in small-sample and low-reliability

conditions. We thus recommend the use of the alignment optimization methods for

adjusting partial invariance when comparing latent constructs across a few groups.

Keywords: measurement invariance, partial invariance, approximate invariance, item

bias, specification search, alignment optimization

Word count: 8,444
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Adjusting for partial invariance in latent parameter estimation: Comparing forward

specification search and approximate invariance methods

Measurement is the foundation of quantitative science. It is especially crucial for

psychological and behavioral sciences, as research results are highly susceptible to random

and systematic measurement errors in the instruments used. As a result, measurement

invariance, the condition that an instrument measures one or more constructs in the same

way across groups, has been a major research focus. For example, a quick search on the

PsycINFO database found 826 articles with the phrase “measurement invariance” or

“measurement equivalence” in the title or in the abstract, in just years 2018 and 2019.

While a main goal of evaluating measurement invariance is to detect the presence of

problematic items so that those items can be replaced or improved, establishing invariance

is also important because statistical inferences based on observed scores may be

compromised when invariance is violated for one or more items (Horn & McArdle, 1992).

The current paper thus focuses on methods for obtaining valid inferences when

measurement invariance does not hold.

Methodological scholars have shown that when one or more items in an instrument

show systematic bias across groups, a condition known as partial invariance, parameter

estimates and inferences of group comparisons on the latent construct will likely be biased

(Meredith, 1993). One way to correct for the bias is to use a partial invariance model,

where measurement parameters of the biased items are estimated without constraints

across groups. Although previous simulation studies found that using a partial invariance

model resulted in valid estimates and inferences of the latent parameters (e.g., Guenole &

Brown, 2014; Hsiao & Lai, 2018; Shi, Song, & Lewis, 2017), these studies mostly presumed

that researchers already knew which item(s) were invariant and could thus specify the

correct model. In practice, as pointed out in the review by Schmitt and Kuljanin (2008),

researchers usually engage in sequential specification search—iteratively freeing invariance
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constraints—to identify biased items and form a partial invariance model. However, due to

sampling error, the specification search step may not identify the correct partial invariance

model (MacCallum et al., 1992), resulting in model uncertainty. As a result, using a partial

invariance model based on a specification search may lead to less optimal estimates and

inferences than what previous studies suggested.

As a simple heuristic example to illustrate model uncertainty, consider a scenario

with a construct measured by four items in two groups, where item 4 is noninvariant, and

the true latent mean difference, δ, is 0. Given a moderate sample size, using specification

search has an 80% chance of getting the correct partial invariance model in the sample

(i.e., with item 4 correctly identified as noninvariant), in which case the expected estimate

of δ is 0. However, the specification search has a 20% chance of getting a wrong partial

invariance model where item 4 is identified as invariant, which leads to biased δ estimates,

with an expected estimate of, say, 0.2. Therefore, δ is unbiasedly estimated only when the

correct partial invariance model is selected. When incorporating the model uncertainty,

using specification search thus results in a bias of (.80) (0) + (.20) (.20) - 0 = .04 when

estimating δ; however, when evaluating the performance of the specification method,

previous studies have generally ignored model uncertainty.

On the other hand, when the main goal of research is to obtain valid statistical

inferences instead of detecting noninvariant items, several methods based on the concept of

approximate invariance—holding loadings and intercepts to be approximately, but not

exactly, equal—have been proposed. These include the alignment optimization (AO)

(Asparouhov & Muthén, 2014) and the Bayesian approximate invariance with small

variance priors methods (Muthén & Asparouhov, 2013). A potential advantage of them is

they do not require an iterative search process, but instead rely on an approximate

invariance model that do not impose exact invariance assumptions for any items (i.e., they

do not force any loadings or intercepts to be exactly equal across groups).1 Previous

1 As pointed out by the Associate Editor, specification search assumes that exact invariance is achievable,
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research (e.g., Kim et al., 2017; Marsh et al., 2018) has found that AO performed well in

recovering latent parameters when the number of groups is large. However, given that a

vast majority of measurement invariance research focused on two or three groups (Putnick

& Bornstein, 2016), a critical question is whether these newer methods are effective for

adjusting partial invariance in few groups, as compared to the conventional specification

search method, which was developed in context with a few groups.

In the current paper, we present results from three Monte Carlo simulation studies

comparing the accuracy of point estimates and coverage rates of interval estimates from

specification search and several AO and approximate invariance methods. Unlike previous

studies, the simulation studies take into account the model uncertainty in the specification

step. Study 1 focuses on comparing various approaches in recovering the latent means with

two groups, while Study 2 aims to replicate the findings of Study 1 with four groups.

Study 3 focuses on latent regression coefficients of a latent predictor on an observed

outcome. Below we first introduce the model notations and definitions of measurement

invariance under the common factor model framework. We then describe each method to

be compared in more detail and reviewed previous research findings, before transitioning to

the design of the studies in the current paper.

Measurement and Factorial Invariance

Consider a scale of 𝑝 items measuring a latent construct η. Let 𝑦𝑖 𝑗 (𝑖 = 1, 2, . . ., 𝑁; 𝑗

= 1, 2, . . ., 𝑝) be the score of the 𝑖th person on the 𝑗th item. A measurement model links

while approximate invariance methods makes a weaker assumption of approximate invariance. Therefore,
when exact invariance is of interest, switching to an approximate invariance assumption may not be
theoretically sound. In practice, however, we think the line between exact and approximate invariance is
usually blurred: even though the likelihood ratio test in conventional invariance evaluation tests the exact
invariance hypothesis, the test is usually rejected (e.g., Byrne et al., 1989; Schmitt & Kuljanin, 2008; Shi,
Song, & Lewis, 2017), and researchers instead rely on alternative fit indices such as change in CFI and
RMSEA (Chen, 2007; Cheung & Rensvold, 2002), which only indicate whether the invariance constraints
hold approximately given the data, and thus is analogous to approximate invariance. We encourage
researchers to carefully consider their research questions (e.g., testing exact invariance vs. obtaining valid
mean comparisons) when selecting procedures for evaluating invariance.
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𝑦 and η stochastically by specifying the conditional distribution 𝑃(𝑦𝑖 𝑗 |η𝑖;𝝑) with

parameters 𝝑. Formally, measurement invariance holds when the conditional distribution of

the observed items is the same across subgroups (Mellenbergh, 1989; Meredith, 1993), such

that for every subgroup 𝑘 (𝑘 = 1, 2, . . . , 𝐾), like gender and ethnicity,

𝑃(𝑦𝑖 𝑗 𝑘 |η𝑖𝑘 ) does not depend on 𝑘.

In other words, measurement invariance means that any two persons with the same η score

have the same propensity to endorse any value on all items in the scale. Assuming the

correct measurement model, measurement invariance holds when 𝝑 is the same across

groups.

With continuous items, the common factor model (Thurstone, 1947) is usually used,

represented as

𝑦𝑖 𝑗 = ν 𝑗 + λ 𝑗 η𝑖 + ε𝑖 𝑗 , (1)

where ν 𝑗 is the measurement intercept, λ 𝑗 is the factor loading, and ε𝑖 𝑗 is the unique

factor. It is commonly assumed that ε is normally distributed with constant variance θ 𝑗 , so

that 𝑦𝑖 𝑗 is also normally distributed conditioned on η𝑖. In addition, the local independence

assumption is usually applied such that, when conditioned on η𝑖, Cov(𝑦𝑖 𝑗 , 𝑦𝑖 𝑗 ′ |η𝑖) = 0 for

𝑗 ≠ 𝑗 ′, implying that the covariance matrix of εs is diagonal. When there are 𝐾 groups, the

model can be represented as

𝑦𝑖 𝑗 𝑘 = ν 𝑗 𝑘 + λ 𝑗 𝑘 η𝑖𝑘 + ε𝑖 𝑗 𝑘 . (2)

When a common factor model holds, measurement invariance requires that the

measurement parameters, meaning ν 𝑗 , λ 𝑗 , and θ 𝑗 for the model in (1), to be the same

across groups, a condition called factorial invariance (Meredith, 1993). A common

framework for evaluating factorial invariance includes four stages (e.g., Vandenberg &

Lance, 2000): (a) configural invariance, which requires the configuration of the factor
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loadings to be the same across groups (Horn & McArdle, 1992), meaning that each group

should have the same number of latent constructs and each latent construct is measured by

the same set of items across groups; (b) metric invariance, which requires, in addition to

configural invariance, that the factor loadings are equal (i.e., λ 𝑗 𝑘 = λ 𝑗 for all 𝑗s and 𝑘s) to

ensure that the difference between two values in the latent construct is comparable across

groups; (c) scalar invariance, which requires, in addition to metric invariance, that the

measurement intercepts to be the same (i.e., ν 𝑗 𝑘 = ν 𝑗 for all 𝑗s and 𝑘s) to ensure that the

latent construct has the same zero point across groups; (d) strict invariance, or strict

factorial invariance, which requires all measurement parameters (ν 𝑗 , λ 𝑗 , and θ 𝑗 for all 𝑗s)

to be equal across groups.

Specification Search

When there is evidence for violation of a stage of factorial invariance, researchers

commonly conduct a specification search to identify biased items (Schmitt & Kuljanin,

2008). In practice, researchers commonly go through the four factorial invariance stages in

a sequential order (e.g., Kline, 2016), and identify biased items within a stage if the

equality constraints for that stage are rejected. For example, one first conducts a likelihood

ratio test (LRT) comparing the configural invariance and the metric invariance models. If

the LRT is statistically significant (usually at .05 level), indicating at least one of the 𝑝 × 𝐾

loadings is different from others, a specification search is conducted by consulting

modification indices (MI; Sörbom, 1989), and the loading with the largest MI will be freed.

We referred this process as the forward specification search (FS) in this paper.2 3 In the

2 As one reviewer pointed out, nonsequential specification search methods have also been proposed,
including the factor-ratio test (Cheung & Lau, 2012) and the Bayesian SEM approach (Shi, Song, Liao,
et al., 2017). In this paper, we chose to focus on FS given that it is commonly done in the literature (e.g.,
Schmitt & Kuljanin, 2008).
3 The approach was labelled as the backward approach in Jung and Yoon (2016). We chose to follow
Marsh et al. (2018) to call it the forward approach as it is more consistent with the regression literature
from a more restrictive model to a less restrictive model.
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modified model, MIs will be recomputed, and the process of freeing loadings and

recomputing MIs is repeated until none of the MIs of the loadings is larger than a

prespecified cutoff, usually 3.84, which is the 95th percentile of a χ2 distribution with one

degree of freedom. Moving on to the next stage, this partial metric invariance model is

then compared to a model with equality constraints on the intercepts of only the items

that are found metric invariant. Using MIs, one again identifies noninvariant intercepts

sequentially until none of the MIs of the intercepts is larger than the cutoff, resulting in a

partial scalar invariance model.4

When the number of items is large, specification search can involve substantial

capitalization on chance (MacCallum et al., 1992). Consider an example by Skriner and

Chu (2014), in which the authors evaluated measurement invariance of the 20-item Center

for Epidemiologic Studies Depression Scale (CES-D) across four ethnic groups, before

conducting latent mean comparisons. If we just consider invariance constraints on

intercepts, there were 60 of them (i.e., number of items × [number of groups - 1]).

Theoretically, there were 260 possible partial invariance models the researcher could have

ended up with, thus a lot of model uncertainty. For example, MacCallum et al. (1992)

studied the problem of specification search in structural equation modeling, the underlying

framework for the current discussion of factorial invariance. The authors showed that, for

sample data sets simulated from the same data generating model, specification search may

lead to the selection of very different models when the sample size is small to moderate (i.e.,

400 or less). Therefore, there could be a lot of model uncertainty in a specification search

to identify a partial invariance model. However, the standard errors (SEs) obtained in the

final partial invariance model does not capture the model uncertainty due to the search and

may underestimate the sampling variability of the parameter estimates, leading to inflated

4 Theoretically, the process is then repeated for identifying noninvariant unique factor variances.
Practically, for continuous indicators, partial scalar invariance is sufficient for valid latent mean
comparisons (Schmitt & Kuljanin, 2008; Whittaker, 2013), so in the current paper we stop the specification
search process when the final partial scalar invariance model is reached.
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Type I errors and suboptimal coverage rates of the sample confidence intervals (CIs).5

Previous research has shown that FS worked well in identifying biased items,

although they usually relied on the design with two groups, six items, and high composite

reliability of above .90 (Jung & Yoon, 2016; Yoon & Kim, 2014; Yoon & Millsap, 2007).

Yoon and Kim (2014) showed, in a simulation study with six items and two groups, that

sequential specification search performed well in terms of correctly identifying the biased

items while keeping the false positive rate of flagging an invariant item to less than 3%.

Jung and Yoon (2016) further suggested that using a more conservative cutoff of 6.635 on

modification indices reduced the false detection rates. However, unlike conventional

statistical inferences, when it comes to adjusting for partial invariance, false positives may

be less costly than false negatives,6 as demonstrated in Shi, Song, and Lewis (2017). On

the other hand, Marsh et al. (2018) evaluated FS using the ΔCFI criterion (Cheung &

Rensvold, 2002) in conditions of 15 groups with five items when all items were biased.

They found that FS performed poorly in terms of biases and mean squared errors (MSEs)

for the measurement and structural parameter estimates, compared to the alignment

method to be discussed below. However, it should be noted that the change in CFI

criterion resulted in more false negatives as it tends to keep constraints that may have

large modification indices, especially in large samples. To our knowledge, however, there

have been no previous studies evaluating parameter estimations following FS with

sequentially-relaxed constraints based on MIs.

5 A similar problem has been widely studied in using stepwise regression for variable selections (Harrell,
2001), and an adjusted inference procedure that takes into account model selection uncertainty was
proposed by Tibshirani et al. (2016).
6 This is because incorrectly constraining unequal parameters biases the latent parameters, whereas
allowing parameters that are indeed equal to be different only reduces the precision in the latent parameter
estimates.
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Approximate Invariance Methods

Alignment Optimization. Different from the specification search methods (e.g.,

FS) for noninvariant item detection, which involve many model comparisons when the

number of items and number of groups are large, alignment optimization (AO) simplifies

noninvariance detection by minimizing small noninvariances while retaining large

noninvariances, and can be used across many groups (2–100; Asparouhov & Muthén, 2014;

Muthén & Asparouhov, 2018). While AO still examines noninvariance under a factor

model, it does not require a specific stage of factorial invariance (e.g., scalar invariance) for

meaningful group comparisons; instead it aims to reach an approximate invariance

condition that has the minimum number of highly noninvariant parameters across groups

(Muthén & Asparouhov, 2018).

Specifically, under the one factor model in (2), the alignment algorithm first evaluates

a configural model by standardizing latent factors across all 𝐾 groups for identifications

(i.e., α𝑘 = 0 and ψ𝑘 = 1) and freely estimating factor loadings 𝛌𝑘,0 and intercepts 𝛎𝑘,0; we

denote this baseline configural model 𝑀0. Given that there are infinitely many possible sets

of {α𝑘 , ψ𝑘 , 𝛌𝑘 , 𝛎𝑘 } that would give the same model-implied means and covariances for y, for

𝑘 > 1, AO obtains α𝑘 and ψ𝑘 that minimize a simplicity function (Asparouhov & Muthén,

2014)

𝐹 =
∑︁
𝑗

∑︁
𝑘1<𝑘2

𝑤𝑘1,𝑘2 𝑓 (λ 𝑗 𝑘1,1 − λ 𝑗 𝑘2,1) +
∑︁
𝑗

∑︁
𝑘1<𝑘2

𝑤𝑘1,𝑘2 𝑓 (ν 𝑗 𝑘1,1 − ν 𝑗 𝑘2,1), (3)

where λ 𝑗 𝑘1,1 and λ 𝑗 𝑘2,1 denote factor loadings of item 𝑗 in groups 𝑘1 and 𝑘2 under model

𝑀1; ν 𝑗 𝑘1,1 and ν 𝑗 𝑘2,1 denote the intercepts; 𝑤𝑘1,𝑘2 =
√︁
𝑁𝑘1𝑁𝑘2 is a weight coefficient based

on the geometric mean of group sample sizes, and 𝑓 (·) is some component loss function.

Asparouhov and Muthén (2014) suggested a good choice of 𝑓 (·) that prefers few large

noninvariant parameters and many small pairwise differences in factor loadings and
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intercepts (i.e., approximate invariance) is

𝑓 (𝑥) =
√︃√

𝑥2 + ϵ, (4)

with a small ϵ such as .01 (which is the default in Mplus).

As a result, the AO model has the same fit as the baseline configural invariance

model, but the parameter estimates, including the latent means and variances, are directly

interpretable as they are set on a metric that is comparable across groups. If identification

of noninvariant items is of interest, AO evaluates whether a measurement parameter in one

group is different from those in other groups by iteratively identifying an invariant set for

each parameter via pairwise comparison tests, with more details described in Asparouhov

and Muthén (2014). Asparouhov and Muthén (2014) further distinguished between FIXED

and FREE AO estimation. For FIXED AO, factor mean in the first group is α1 = 0; for

FREE AO, it estimates α1.

Given that AO is relatively new, there has been limited, but increasing, research

efforts to evaluate its performance. Asparouhov and Muthén (2014) found that, for a

model with five continuous items and at most one noninvariant item, AO yielded relatively

unbiased parameter estimates across conditions of sample sizes (100 or 1,000) and numbers

of groups (2 to 60), but with larger biases for conditions with small numbers of groups and

sample size (e.g., 20% for latent mean estimates). They also compared AO with maximum

likelihood and the Bayesian version of AO with noninformative priors (denoted as BAO in

this paper), and found that coverage rates of 95% CI of AO and credible interval (CrI) of

BAO were close to or above 95% except for some conditions with small number of groups.

Muthén and Asparouhov (2014) suggested that, when there are many groups, AO can

produce trustworthy results when the percentage of noninvariant parameters was less than

25%. Similarly, Flake and McCoach (2018), in a simulation study with a two-factor model

and 14 polytomous items, found AO performed well in recovering measurement and
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structural parameters with 29% or less noninvariance (bias ≤ 8%), but showed more biases

(up to 23%) in conditions with 43% noninvariance. Marsh et al. (2018) found that AO

outperformed specification search method using CFI in terms of bias and MSE of

parameter estimates in a simulation with 15 groups and noninvariance on all items. Kim

et al. (2017), in a simulation study with a one-factor model with six items, also supported

the use of AO to correctly identifying noninvariant items with many groups (25 or 50). On

the contrary, Pokropek et al. (2019) compared correctly specified partial invariance model,

AO, and SV priors (without alignment) in conditions with large number of groups (24),

large sample size (1,500), and small number of items (3 to 5), and found that AO only

performed reasonably in recovering latent mean estimates with good coverage of 95% CIs

when there were no more than 20% noninvariant items.

While previous results of AO were promising especially in many groups, it is not clear

how it performs in a smaller number of groups with varying numbers of items and

proportions of noninvariance. More importantly, as a majority of empirical studies

evaluating measurement invariance focused on demographic subgroups, which involves only

a few groups, the question remains how AO performs relative to specification search in

recovering measurement and structural parameters and how this depends on other factors

such as sample size.

Bayesian Approximate Invariance. In the context of factorial invariance,

Muthén and Asparouhov (2013) proposed the use of small variance (SV) priors under the

Bayesian framework, in which researchers assign 𝑁 (0, σ𝑑) priors for some small values of σ𝑑

(e.g., σ𝑑 = 0.1, corresponding to a variance of 0.01) on the differences of loadings and

intercepts across groups. Such priors represent the a priori belief that approximate

measurement invariance holds so that the differences in intercepts and loadings are

relatively small, thus a less restrictive assumption than in partial invariance models where

some loading and intercept differences are exactly zero (van de Schoot et al., 2013). In

other words, approximate invariance allows a “wiggle room” in the form of small degree of
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parameter differences across groups in an attempt to balance invariance assumption and

model fit (van de Schoot et al., 2013). The use of SV priors is considered more realistic as

exact scalar or strict invariance may be too ideal to reach (Marsh et al., 2018). However, as

discussed in Pokropek et al. (2020), the choice of the scale value in SV priors could affect

the coverage rates of the latent means, and the use of SV priors worked best when the prior

scale approximately matched the actual variability of the noninvariant parameters in the

data.

Muthén and Asparouhov (2013) performed a simulation study with six continuous

items across 10 groups to evaluate the statistical power of using SV priors for detecting

item biases. Based on the 95% credible interval (CrI) of the posterior distributions of

loading/intercept differences, SV priors had high detection rates for small violations of

noninvariance. They found, however, that the use of SV priors sometimes produced biased

estimates of factor means and variances In another simulation study with a one-factor

model and four continuous items for two groups, van de Schoot et al. (2013) found the use

of SV priors with variances of 0.01 or 0.005 for intercept differences performed well in

recovering latent mean parameters, but had overestimated standard errors due to the

alignment issue as described in Muthén and Asparouhov (2013), which relates to the factor

indeterminacy issue as the scale of the latent variable is not set (see also Levy & Mislevy,

2016). Both Asparouhov and Muthén (2014) and van de Schoot et al. (2013) suggested

resolving this issue by using the alignment optimization technique, described in the

previous section, together with SV priors. However, to our knowledge, this approach, which

we denoted as BAIA (Bayesian approximate invariance with alignment) in this study, had

not been systematically evaluated. Therefore, in the current paper, we also examine two

methods based on Bayesian approximate invariance with SV priors and AO.

Bayesian Approximate Invariance with Alignment (BAIA). To resolve the

factor inderterminacy issue with the use of SV priors, both Asparouhov and Muthén (2014)

and van de Schoot et al. (2013) suggested using the alignment optimization technique to
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set the scale of the latent variable, an approach we denoted as BAIA in this study. The

BAIA method is similar to BAO, but uses SV priors on the differences of the loadings and

the intercepts across groups. As such, BAIA combines Bayesian approximate invariance

with AO. Muthén and Asparouhov (2013) discussed several advantages of BAIA, including

the possibility of modeling unique factor covariances with strong regularizing priors, better

interpretability of alignment results, and stabilized alignment estimations. To our

knowledge, however, BAIA has not been evaluated in the simulation studies by Muthén

and Asparouhov (2013) nor in other previous studies, so our study will provide insights on

whether combining SV priors and AO would be desirable.

Two-Step Bayesian Approximate Invariance with Alignment (BAIA-2S).

Muthén and Asparouhov (2013) also proposed a two-step procedure, which runs Bayesian

approximate invariance in the first step; however, rather than using the parameter

estimates on the measurement and structural parameters from the approximate invariance

model, the goal of the first step is to identify noninvariant loadings and intercepts using the

pairwise comparisons tests described in Asparouhov and Muthén (2014). In the second

step, a partial factorial invariance model is fit to the data with invariance constraints only

on parameters that were not flagged as noninvariant in the first step, and like FS, the

parameter estimates of this two-step approach will be from the partial invariance model in

the second step.

In a simulation with 10 groups, Muthén and Asparouhov (2013) found that the

two-step approach gave better factor means and variances estimates than BAO, although

the CI coverage rates for the factor variances were suboptimal. The two-step approach by

Muthén and Asparouhov (2013), however, did not incorporate the alignment method later

developed. While to our knowledge this two-step approach with alignment—BAIA-2S—has

not been evaluated in the literature, van de Schoot et al. (2013) suggested that including

alignment helped solve the factor indeterminacy issue and further improves the estimates

under Bayesian approximate invariance. Therefore, we include BAIA-2S in the list of



COMPARING METHODS FOR ADJUSTING PARTIAL INVARIANCE 15

methods in the simulation.

Current Studies

In the current research, we compared the performance of forward specification search

(FS) and four approximate invariance methods: frequentist alignment optimization (AO),

Bayesian AO with noninformative priors (BAO), Bayesian approximate invariance with

alignment (BAIA), and two-step BAIA (BAIA-2S), in recovering structural (i.e., α, ψ, and

path coefficient) and measurement (i.e., λ and ν) parameters in small numbers of groups.

Given inferences based on FS ignored the model uncertainty in the search, we expected it

would yield SEs that are too small and CIs that are too narrow. On the other hand, by

avoiding the instability in searching for a partial invariance model, the approximate

invariance methods may yield parameter estimates with higher efficiency (as measured by

MSE), as previously demonstrated in Marsh et al. (2018), for the latent parameters.

For each simulation study, we report how we determined our design conditions, the

number of replications, and all evaluation measures of the simulation results.

Study 1

In Study 1, we compared five methods for adjusting item bias using a one-factor

model with two groups, which is commonly seen in a variety of research. Given that

previous simulation studies examining FS have only focused on relatively small numbers of

items and two groups (Jung & Yoon, 2016; van de Schoot et al., 2013; Yoon & Kim, 2014),

in Study 1 we expanded the design conditions to include larger numbers of items. The data

generating model followed a factor model with latent means and variances of α1 = 0 and

ψ1 = 1 for Group 1 and ψ2 = 1.3 for Group 2; α2 was manipulated as one of the design

conditions. All invariant loadings were chosen to be 0.7 and all invariant intercepts were 0.

The loading and intercept patterns for noninvariant items were described in the design
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factors below. In addition, to introduce model misspecification so that the simulated data

resembled more closely to those in actual research, we used a procedure similar to

MacCallum and Tucker (1991) by adding minor unique factor covariances with magnitudes

between -0.1 and 0.1 to the data. The unique factor covariance matrix was simulated by

first sampling from an LKJ distribution for correlation matrices (Lewandowski et al.,

2009), and then dividing by 10 so that the maximum absolute value was 0.1. When fully

invariant data were simulated, the analytic model had a population RMSEA of .057, which

was around the typical value of an acceptable model in real research (Hu & Bentler,

1999).7 The unique factor covariance matrix with 𝑝 = 6 shown in the Appendix. For all

conditions, the unique factor variance of each item was set as 1 − 0.1 − λ2
𝑗1 for both groups

so that the total variance = 1 for all items in Group 1.

Design Conditions

Sample Size Per Group (𝑛). The sample size was kept the same across groups

with 𝑛 = 100 or 500, which was similar to previous simulation studies (e.g., Yoon & Kim,

2014).

Number of Items (𝑝). The number of items was 𝑝 = 6, 12, or 24. Yoon and Kim

(2014) and Jung and Yoon (2016) showed that sequential specification search methods

effectively identified biased items for models with 𝑝 = 6, and most of the previous

simulation studies had similarly small 𝑝 (e.g., Asparouhov & Muthén, 2014; van de Schoot

et al., 2013). With larger 𝑝 the composite reliability increased, but there was also

potentially more capitalization on chance as demonstrated in MacCallum et al. (1992).

7 As pointed out by one reviewer, with misspecification in the sample model, the parameter estimates may
converge to values (𝜗∗) that are different from the population values (𝜗). In our simulations, the impact of
misspecification was relatively minor, as the differences between the 𝜗∗ and 𝜗 were no more than 0.021 for
the latent mean and no more than 0.037 for the latent variance. Given that applied researchers are usually
interested in the 𝜗 instead of 𝜗∗, we used the former as reference when evaluating the sample estimates.
Due to the unmodeled unique covariance, the loadings (but not the intercepts) also converged to slightly
different values across groups (with a difference of about 0.01) even when they were invariant in the
correctly specified model, so the LRT in FS may not follow its theoretical behavior (Yuan & Bentler, 2004).
In our simulations, the impact was negligible as discussed in the follow-up analyses in Study 2.



COMPARING METHODS FOR ADJUSTING PARTIAL INVARIANCE 17

Pattern of Noninvariant Parameters. We simulated four patterns of

noninvariance based on the proportion of noninvariant parameters (𝑟ni; not the proportion

of noninvariant items) and the direction of bias. Noninvariant loadings and intercepts were

present simultaneously. Specifically, there were one condition with 𝑟ni = 0, two conditions

with 𝑟ni = 1/3 (balanced vs. skewed directions), and one condition with 𝑟ni = 2/3.8 9

When 𝑟ni = 1/3, the first 𝑝/3 items (e.g., items 1 to 8 when 𝑝 = 24) were simulated to

have noninvariant loadings; the first 𝑝/6 items and items 𝑝/2 + 1 to 𝑝/2 + 𝑝/6 (e.g., items 1

to 4 and 13 to 16) were simulated to have noninvariant intercepts. With this pattern, 𝑝/6

items had both noninvariant loadings and intercepts, 𝑝/2 items had invariant loadings and

intercepts, and the remaining items had either noninvariant loadings or noninvariant

intercepts. When 𝑟ni = 2/3, the first 2𝑝/3 items were simulated to have noninvariant

loadings, and the first 𝑝/3 items and items 𝑝/2 + 1 to 𝑝/2 + 𝑝/3 were simulated to have

noninvariant intercepts. As a result, only 𝑝/6 items had both invariant loadings and

invariant intercepts.

In half of the conditions with 𝑟ni = 1/3, the direction of bias was balanced across

items; it was skewed in the other half. Specifically, for the 1/3-balanced noninvariance

8 While it is not uncommon in practice to find a large proportion of noninvariant parameters, such as
Hasan et al. (2019) who found that a 12-item modified Shortened Adapted Social Capital Assessment Tool
had 2/3 noninvariant parameters (5 loadings, 11 intercepts) across gender, theoretically it is debatable
whether the construct is still comparable when a majority of the items are found noninvariant. Whereas
Steenkamp and Baumgartner (1998) and Vandenberg and Lance (2000) suggested that more than half of
the items should be invariant for meaningful comparisons, the studies by Marsh et al. (2018), Pokropek
et al. (2019), and Shi et al. (2019) assumed that latent variables were comparable with only a few invariant
items or even with all items only approximately invariant. We follow Marsh et al. and Shi et al. to include
simulation conditions with more than 50% noninvariant parameters, as in practice it is possible that many
items may have slightly different intercepts and loadings; however, readers should interpret the simulation
results with 2/3 noninvariant parameters with caution, and additional considerations such as magnitudes of
noninvariance and conceptual meaning of the items should be used to decide whether the latent variable is
still comparable across groups.
9 As discussed in Asparouhov and Muthén (2014), for a hypothetical model in which most parameters are
noninvariant in the same direction, there exists an equivalent but simpler model with fewer noninvariant
parameters, which Asparouhov and Muthén referred to as the “alignment” issue. In this case, both FS and
approximate invariance methods would identify noninvariant parameters according to the simpler model.
Therefore, we only simulated data with many noninvariant parameters in balanced directions, which is
similar to the design by Marsh et al. (2018).
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condition, half of the noninvariant items had larger loadings (and intercepts) in Group 1

than in Group 2, whereas the other half had larger loadings (and intercepts) in Group 2.

For the 1/3-skewed noninvariance condition, all noninvariant items had larger loadings

(and intercepts) in Group 1 than in Group 2.

The magnitudes of noninvariance were chosen according to the effect size benchmarks

from Nye et al. (2018) based on a review of the organizational literature. Specifically, half

of the noninvariant parameters had a medium effect size (i.e., Δλ = 0.2, Δν = 0.5), whereas

the other half had a small effect size (i.e., Δλ = 0.1, Δν = 0.25). Table 1 shows the loading

and intercept pattern with 𝑝 = 12 for the manipulated noninvariance patterns.

Latent Mean of Group 2 (α2). We manipulated α2 to be 0 and 0.5. The zero

condition allowed evaluation of empirical Type I error rates, and 0.5 was a typical effect

size value deemed minimally clinically important as suggested by Angst et al. (2017).

Analytic Models

We analyzed each simulated data set with five approaches as described below.

Because the data were simulated with unique covariances, there were model

misspecification in all five approaches as they assumed no unique covariances.

Forward Stepwise Specification Search (FS). As previously described, with FS,

invariance constraints at a particular stage were sequentially freed based on modification

indices, until none of the modification indices were above the 3.84 cutoff. We used R and

the lavaan package (Version 0.6.7; Rosseel et al., 2020) to implement the FS procedure.

Alignment Optimization (AO). Maximum likelihood estimation was used with

the AO method, using the ALIGNMENT=FIXED option in Mplus. We used the default ϵ = .01

for the component loss function (see equation [4]).

Bayesian Alignment Optimization (BAO). BAO used MCMC (with Gibbs

sampling) in Mplus (Version 8.3) with the ESTIMATOR=BAYES option. We used the default
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noninformative priors in Mplus (i.e., uniform priors from −∞ to ∞ or from 0 to ∞) for all

parameters. The Gibbs sampling algorithm drew at least 10,000 samples, and stopped

when the potential scale reduction factor dropped to below 1.01 (Vehtari et al., 2019). The

first half of the posterior samples were discarded as burn-ins. As described in Asparouhov

and Muthén (2014) and van de Schoot et al. (2013), alignment was then performed for each

MCMC iteration (post burn-in) to improve interpretability using the ALIGNMENT=FIXED

option.

Bayesian Approximate Invariance With Alignment (BAIA). Given that Nye

et al. (2018) suggested that a difference in standardized loadings less than 0.1 and a

difference in intercepts less than 0.25 were considered negligible, we specified a 𝑁 (0, 0.1)

prior for the difference of each pairs of loadings and a 𝑁 (0, 0.25) prior for the difference of

each pair of intercepts across groups.10 Following Asparouhov and Muthén (2014),

alignment was then performed using the ALIGNMENT=FIXED(BSEM) option.

Two-Step BAIA (BAIA-2S). From the output of BAIA, we obtained the Mplus

test results that indicated which loadings and intercepts were found noninvariant, based on

pairwise Wald tests with significance level at .001 (as described in Asparouhov & Muthén,

2014). We then used lavaan to specify a partial invariance model according to the Mplus

output.

In addition, we fitted the partial scalar invariance model with the correct constraints

on the loadings and intercepts (but not for the unique factor covariances), denoted as PI.

Data Generation

We used R and lavaan to simulate 2,500 data sets for each condition, which would be

sufficient to keep the Monte Carlo error to less than 2% of the SEs of the parameters. For

Type I errors, 2,500 replications corresponded to a margin of error of less than 0.5

10 This corresponds to N(0, 0.01) and N(0, 0.0625) in Mplus, as there the second number requires
input of the variance instead of the standard deviation.
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percentage points, which satisfied the stringent criterion defined by Bradley (1978). The

simulateData() function in lavaan was used to simulate normally distributed data for two

groups.

Each simulated data set was analyzed using the methods described above. For

models fitted in Mplus, the results were then imported into R using the MplusAutomation

package (Version 0.8; Hallquist & Wiley, 2018). For all methods, the models were

identified by fixing α1 = 0 and ψ1 = 1. In each analysis we obtained point (maximum

likelihood or posterior median), uncertainty (standard error or posterior SD), and interval

(95% Wald CI or symmetric Bayesian CrI) estimates for α2 and ψ2, the latent mean and

variance of Group 2, as well as for all loadings (λs) and intercepts (νs) of both groups.

Evaluation Criteria

For each parameter 𝜗 and analytic method in each simulation condition, we evaluated

the following.

Bias. The bias was computed as

¯̂
𝜗 − 𝜗,

where ¯̂
𝜗 =

∑𝑅
𝑟=1 𝜗𝑟
𝑅

is the mean of the 𝜗𝑟 estimates across 2,500 replications, and 𝜗 is the

population parameter value. We only computed bias for α2 and ψ2, as biases for the λs

and νs might cancel out, and estimation performance for these parameters was better

captured by the relative efficiency.

Relative Efficiency. An unbiased estimator may not be preferred over a slightly

biased estimator if the former has a much larger sampling variance. This is particularly true

for Bayesian methods, as Bayes estimators tend to be slightly biased but may have smaller

sampling variability, so that overall it tends to be closer to the true value on average. To

compare the different methods balancing the bias-variance tradeoff, we computed the
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relative efficiency (RE) of each method relative to the estimator based on the correctly

specified partial invariance model (PI). Specifically, for an estimator based on method 𝑀,

RE(𝜗𝑀 , 𝜗PI) = MSE(𝜗PI)
MSE(𝜗𝑀)

(5)

=

∑𝑅
𝑟=1(𝜗PI

𝑟 − ¯̂
𝜗PI)2/𝑅∑𝑅

𝑟=1(𝜗𝑀𝑟 − ¯̂
𝜗𝑀)2/𝑅

, (6)

where MSE is the mean squared error. An RE larger than one means that method 𝑀

should be preferred over PI. For λs and νs, we computed REs as ratios of average MSEs

across 𝑝 items.

Error Rate of 95% CI and CrI. For each method and simulated data set we

obtained either (for maximum likelihood) the 95% Wald CI by 𝜗 ± 𝑧.975ŜE (𝜗), where 𝑧.975

is the 97.5th percentile in a standard normal distribution, or (for Bayesian) the 95%

symmetric CrI as the 2.5th and the 97.5th percentiles of the posterior distribution. The

empirical error rates, denoted as α∗, was calculated as the proportion of times the

constructed CI or CrI failed to contain the population 𝜗 value (i.e., 1 − coverage rates). A

valid 95% CI or CrI should have an error rate of at most 5%.

We used the SimDesign (Version 2.2; Chalmers & Adkins, 2020) package in R to

structure the simulation studies.

Results

The simulation results are shown in Figure 1 (bias), Figure 2 (RE), and Figure 3

(CI/CrI error rate). Here we summarize the results for each approach for adjusting partial

invariance.

FS. The performance of FS, in terms of absolute bias, RE, and error rate, was

sensitive to the amount of noninvariant parameters (𝑟ni) and sample size. Biases of FS were

close to zero for most conditions (median bias = 0.04). However, for αs, FS yielded the
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highest biases (up to 0.29) among tested methods for the condition with 2/3-balanced

noninvariance pattern. Overall, FS maintained good REs for νs, α, and ψ for most

conditions, except with 𝑟ni = 2/3. For λs, FS showed lower REs (median RE = 0.73), but

they were still comparable to AO and BAO. When 𝑟ni = 2/3 and 𝑛 = 500, FS demonstrated

inflated error rates for all parameters (median = 37.15%) and decreased REs. The increase

in bias and error rates was most prominent in estimating α (with error rates up to 83.48%);

the decrease in efficiency was most noticeable in estimating νs and αs.

AO. Compared to all other tested methods, AO in general gave the most desirable

performance in terms of bias, RE, and error rate. AO well controlled the bias close to zero

for most conditions (median bias = 0.03). When the pattern of noninvariance was

1/3-skewed, although biases of AO were substantially above zero for ψs, other methods

yielded comparable or even larger biases. AO maintained good REs (median RE = 0.90)

and error rates close to the 5% nominal level (median error rate = 5.88%) across varying

degrees of noninvariance and sample sizes. For conditions with the 1/3-skewed

noninvariance pattern, AO gave slightly worse estimates of α and ψ, especially with larger

sample size (𝑛 = 500).

BAO. The performance of BAO was similar to AO, in terms of error rate and bias,

but was more sensitive to sample size. BAO, just as AO, controlled bias close to zero for

most conditions (median bias = 0.04), except for ψs when the noninvariance pattern was

1/3-skewed. When estimating λs, it consistently had lower REs particularly when 𝑛 = 100,

but had higher REs than AO and generally outperformed the correctly specified PI (i.e.,

RE > 1) in small samples for α and ψ. The error rates for CrIs were higher for λ with

𝑝 = 24 and 𝑛 = 100 (median error rate = 17.45%), and for α with the 1/3-skewed

noninvariance pattern (median error rate = 14.44%), than for other conditions.

BAIA. Similar to BAO, BAIA was consistently less efficient in yielding estimates of

λs, and was even less efficient when sample size was small (𝑛 = 100), but had similar REs

as BAO when 𝑛 = 100 for α, and better REs for those parameters when 𝑝 = 6. In terms of
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bias, it produced unstable estimates of ψs across conditions. In terms of error rates, it

performed poorly in small samples for λs and ψ, and in large samples for α.

BAIA-2S. The performance of BAIA-2S had a similar pattern as FS in terms of

bias and RE. BAIA-2S had biases close to zero for most cases but increased biases for the

conditions with 1/3-skewed and 2/3-balanced noninvariance pattern. It also had good REs

when the data were fully invariant but gradually dropped off when 𝑟ni increased. Like FS,

it generally had better performance for estimating νs and α in larger samples, but better

performance for estimating λ and ψ in small samples. The inflation of error rates of CIs

increased with larger 𝑟ni, but to a lesser degree than FS.

Overall, AO showed the best performance in terms of bias and RE across parameters

and in terms of maintaining good coverage rates of CIs, but BAO yielded estimates with

higher precision in small samples. FS also performed well for most conditions as long as

the proportion of noninvariant parameters was no more than 1/3, but it had a substantial

drop-off with a larger proportion of noninvariant parameters. Because the data were

simulated with misspecification in the covariance structure, the results also showed that FS

was more sensitive to misspecification with increased error rates in λ and ψ, whereas AO

and BAO were more robust.

We also did a follow-up analysis to compare parameter bias between invariant and

noninvariant loadings and intercepts for the four conditions with 𝑁 = 500, 𝑝 = 12, and

1/3-balanced and 2/3-balanced noninvariance patterns. Whereas the absolute parameter

bias was generally larger for noninvariant than invariant loadings and intercepts, in general

it was smallest for AO (average absolute bias = 0.01 and 0.02 for invariant and

noninvariant loadings) than for FS (average absolute bias = 0.02 and 0.05 for invariant and

noninvariant loadings). The biases of FS were similar to those of BAIA-2S, and were larger

than those of BAO and BAIA. The same pattern was observed for both 𝑟ni = 1/3 and

𝑟ni = 2/3. Full results can be found in the supplemental material.
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Study 2

In Study 2, we attempted to replicate the findings in Study 1 in a four-group setting.

The design factors were the same as in Study 1, except that we excluded the 𝑝 = 24

conditions, and used 𝑛 = 50 or 500 per group as the sample size conditions. The two

conditions of α patterns were {0, 0, 0, 0} and {0, .5, -.25, .125}. For all conditions, ψs had

the pattern {1, 1.3, 1, 1.3}. In addition, whereas in Study 1 we simulated some items with

small bias and some with medium bias, in Study 2 we simulated those items with either

small bias or large bias (i.e., 0.3 in loadings and 0.75 in intercepts). Because there were

three freely estimated αs and ψs, we calculated REs using the average MSEs and the

average error rates of CIs (or CrIs), the same way we did for λs and νs in Study 1.

As shown in Figures 4 and 5, the results were highly similar to those in Study 1, in

that AO overall gave good REs across conditions and with good CI error rates. However,

with four groups BAO performed almost identically to AO in large samples but

outperformed AO in small samples for νs, αs, and ψs, with similar error rates. Similar to

Study 1, FS and BAIA-2S performed similarly except when there were 2/3 noninvariant

items, where BAIA-2S was better. The small variance priors in BAIA resulted in increased

REs for estimating αs when 𝑛 = 50, 𝑝 = 12, and all αs = 0, but generally showed poor REs

for estimating λs and ψs when 𝑛 = 50 and 𝑝 = 12 with highly inflated error rates. Overall,

with four groups, BAO and AO should be the methods of choice for adjusting partial

invariance, with BAO being more efficient in small samples.

For the 16 conditions with equal αs across groups (i.e., α𝑘 = 0 for all 𝑘), we also

obtained the empirical Type I error rates for the omnibus test α1 = α2 = α3 = α4. The

likelihood ratio test (LRT) with three degrees of freedom was used to compare the model

without constraints on the αs and that with equality constraints on the αs for the correctly

specified PI, FS, and BAIA-2S, whereas the Wald test was used for AO (as LRT was not

available with alignment). Significance tests were not available from BAO and BAIA in
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Mplus at the time of writing.

As expected and shown in Table 2, when 𝑟ni = 0, all methods yielded reasonable

empirical Type I error rates (α∗s), but AO was slightly conservative in small samples (1.4%

to 2.0%). With 𝑟ni = 1/3, AO generally maintained acceptable α∗ except with the

1/3-skewed noninvariance pattern and 𝑛 = 500 (9.0%), whereas both FS and BAIA-2S had

inflated α∗s between 6.4% and 10.6%. With 𝑟ni = 2/3, both FS and BAIA-2S had highly

inflated α∗ (> 75% for FS, > 17% for BAIA-2S), while AO performed much better but still

had inflated α∗ of 8% to 10% when 𝑛 = 500.

When Score Reliability Is Low. As the simulation conditions in Study 2 had

high composite reliability with Cronbach’s alphas = .852 when 𝑝 = 6 and .920 when 𝑝 = 12,

we would like to investigate whether the results would change when the composite

reliability is low. Thus, we simulated additional data as in Study 2 but with the

standardized loadings reduced to .4, resulting in Cronbach’s alphas = .533 when 𝑝 = 6 and

.696 when 𝑝 = 12. The pattern of the results was in general consistent with conditions with

high reliability, so we only reported a few key findings (with the full results available in the

supplemental material). Specifically, while FS had worse REs when there were 2/3

noninvariant parameters, it performed as good as AO in other conditions, and had better

REs in estimating λs and ψs. However, FS suffered from even higher error rates of CIs in

low reliability conditions, so while they produced good parameter estimates, the standard

errors were underestimated as it did not take into account the model uncertainty in the

search process. Across conditions with low reliability, BAO had consistently higher REs

than AO, especially 𝑝 = 6 (i.e., when reliability is low), and maintained good error rates

except for some conditions of 𝑛 = 500 and 𝑝 = 12 (with median error rate = 7.2%), while

AO had more acceptable error rates across conditions. Both BAIA and BAIA-2S also had

unacceptably high error rates (up to 99.8% and 40.5% in some conditions). Therefore,

BAO should be preferred in small sample size and low reliability situations, while both AO

and BAO should be preferred over FS if researchers want to obtain valid inferences.
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When there were no misspecification. As one of the reviewers pointed out, our

finding that AO performed better than FS may be sensitive to model misspecification. To

examine that, we run an additional simulation using the same conditions as in Study 2,

except that there were no unique covariances in the data generating model. The results

were essentially identical to those of Study 2, and readers can find more details in the

supplemental material.

Study 3

In Study 3, we compare the specification search and approximate invariance

approaches to adjust for partial invariance in estimating path coefficients and their

differences across groups (i.e., interaction effects). As noted in Marsh et al. (2018),

currently both AO and BAO can only be used for confirmatory factor analytic (CFA)

models, meaning that one cannot simultaneously do alignment and estimate structural

relations of latent variables with other predictors or outcomes. However, because the

alignment model is just one of the infinitely many possible configural invariance model,

Marsh et al. (2018) proposed the alignment-within-CFA (AwC) approach by including

covariates or outcome variables in the second step and constrained the loading and

intercept of one anchor variable to be the same as the alignment solution for each latent

factor. By doing so, the definition of the latent variable would generally be highly similar

to the alignment solution. Marsh et al. (2018) showed that the alignment method with

maximum likelihood performed well in recovering latent means for 15 groups; however, to

our knowledge no previous studies had directly investigated the performance of AwC in

recovering structural coefficients.

Specifically, in Study 3, we evaluated various approaches to estimating path

coefficients of a latent predictor on an observed outcome for three groups. We denoted the

path coefficient as β1. We compared the specification search approach that identifies a

partial invariance model in the first step and includes the outcome as the second step, as
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well as several variants of the AwC methods, including AO, BAO, and BAIA. In addition,

we also included two approaches discussed in Muthén and Asparouhov (2013), including

(a) BAIA-2S as in Studies 1 and 2, in which a partial invariance model was identified using

BAIA in step 1, and (b) a one-step simultaneous Bayesian method with small variance

priors on the loading and intercept differences and with the outcome variable also included

in the model, but without alignment optimization, which we denoted as BAI.

We generated data similar to those in Studies 1 and 2 but with an additional

outcome variable. Specifically, we simulated data with three groups in three scenarios:

𝛃1 = {0, 0, 0}, 𝛃1 = {.3, .3, .3}, and 𝛃1 = {.3, .1,−.1}. The simulation conditions in Study 3

were similar to those of Studies 1 and 2, with a 3 (𝛃1) × 2 (𝑁 = 50 or 500) × 4 (fully

invariant, 1/3-balanced, 1/3-skewed, or 2/3 noninvariant parameters) design. Here we only

studied 𝑝 = 12 as Study 1 showed that the number of items had little impact on the

results. Similar to Study 1, we introduced minor unique factor covariances among the 12

items as well as the external outcome variable by randomly simulating a covariance matrix

from an LKJ distribution divided by 10. For each condition and method, we evaluated the

relative efficiency (RE) and error rate of the point and interval estimates. In addition, for

the 16 conditions with equal β1 values across groups (i.e., with no interactions), we

evaluated the empirical Type I error rates.

Results

Given that the results for the loadings, intercepts, latent means, and latent variances

were highly similar to those in Studies 1 and 2, we only presented the results for the latent

regression coefficient estimates. As shown in Figure 6, in general, AO performed the best

with REs close to 1 for all conditions with 𝑟ni = 0 and with the 1/3-balanced noninvariance

pattern, and REs > .90 for conditions with 1/3-skewed and 2/3 noinvariance patterns. FS

performed similarly well with only a slight drop-off with 1/3-skewed and 2/3 noinvariance

patterns. BAIA-2S generally also performed well with REs above 0.86. BAO had good
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performance only when 𝑛 = 500, whereas both BAI (without alignment) and BAIA (with

alignment) both performed poorly in most conditions.

As shown in Figure 7, in terms of CI (or CrI) error rate, all methods generally had

error rates less than 6% except for BAI, with AO (median = 5.27%) performing the best

overall and FS performing reasonably well except in conditions with 𝑟ni = 2/3. Overall, FS

showed better performance for recovering latent regression coefficient parameters than for

latent means.

Table 3 shows the Type I error rates (α∗) for detecting differences in β1 across

groups. All methods yielded values close to 5% and below the 7.5% benchmark (Bradley,

1978) for all conditions, except for one condition for BAIA and for BAIA-2S when 𝑟ni =

2/3 (7.6% and 8.3%, respectively). Overall, BAO had the best control on α∗ (3.8% to

6.1%) across conditions.

Discussion

Traditionally, researchers have relied on comparing multiple models to evaluate

factorial invariance, and use sequential specification search methods to relax invariant

constraints to obtain adjusted estimations and inferences on measurement and latent

structural parameters. While previous research has generally supported the use of

specification search with two groups, a small number of items, and high reliability

conditions (Jung & Yoon, 2016; Yoon & Kim, 2014), the corresponding results ignored the

model uncertainty induced in the specification search process as researchers might identify

the wrong set of items. On the other hand, newer approaches, such as the Bayesian

approximate invariance and the alignment optimization methods, showed promising results

for large number of groups (Asparouhov & Muthén, 2014; Kim et al., 2017; Marsh et al.,

2018), but it was unclear whether they had advantages over the specification search

method in smaller number of groups. To provide more concrete recommendations for
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applied researchers interested in valid comparisons of latent variables across a few groups

(i.e., 2 to 4 groups), in this paper we conducted three simulation studies. To our knowledge

the current study was first in comparing forward specification search (FS), alignment

optimization with both maximum likelihood (AO) and Bayesian estimation (BAO), and

Bayesian approximate invariance methods (BAIA and BAIA-2S), in terms of the

estimation and inferences of model parameters. In addition, we also examined the

alignment-within-CFA approaches proposed by Marsh et al. (2018) in comparison to FS for

estimating latent regression coefficients while adjusting for partial invariance.

Summary of Simulation Results

Across Studies 1 to 3, we found, consistent with Yoon and Kim (2014), that FS

performed well when the proportion of noninvariant parameters was no more than 1/3, but

its performance rapidly dropped off in terms of relative efficiency and CI error rate with

2/3 noninvariant parameters, especially for measurement intercepts and latent means.

Whereas previous studies showed that the use of a correctly specified partial invariance

model could produce accurate parameter estimates with only a small proportion of

invariant items (e.g., Pokropek et al., 2019; Shi, Song, & Lewis, 2017), when model

uncertainty is taken into account, which represents a more realistic situation in practice,

FS only works when the proportion of noninvariant parameters is relatively small (≤ 1/3)

and when the reliability of the item scores is relatively high (i.e., > .80).

On the other hand, our studies show that both AO and BAO are at least as good as

FS in terms of RE and error rate for most conditions and are much better with 2/3

noninvariant parameters. In small samples (𝑛 = 100 in Study 1 and 𝑛 = 50 in Study 2), the

use of Bayesian methods also makes BAO more efficient in estimating latent means and

variances. Thus, whereas previous literature has shown that AO works well in large

number of groups with relatively few large noninvariant parameters (e.g., Flake &

McCoach, 2018; Kim et al., 2017; Marsh et al., 2018; Pokropek et al., 2019), the current
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results show AO and BAO also work well in two to four groups.

The use of small variance priors with alignment, on the contrary, generally biases the

parameter estimates, which is consistent with Muthén and Asparouhov (2013) and

Pokropek et al. (2019), and leads to inflated error rates in credible intervals. Whereas in

some conditions it provides more efficient latent mean estimates in small sample

conditions, its performance is inconsistent across conditions.

Recommendations for Research

Based on the simulation results, if researchers’ goal is to obtain valid and efficient

comparisons on the means or regression coefficients across groups, we recommend the use

of AO for both measurement and structural parameters. In the case of small samples (i.e.,

𝑛 ≤ 100 per group), we also recommend the use of BAO with noninformative priors as it

gives more efficient parameter estimates of latent means and variances (but not latent

regression coefficients). The traditional FS approach generally also works well for

estimating intercepts, latent means, and latent regression coefficients, as long as researchers

are confident that there are no more than 1/3 noninvariant parameters and the reliability is

high, but it should be cautioned that FS may be more sensitive to model misspecifications

than AO and BAO.

On the other hand, our results do not inform the choice between FS and AO when

researchers are interested in detecting the source of noninvariance. For research problems

involving many groups, readers should consult Kim et al. (2017); future research is needed

to compare the performance of FS and AO for detecting noninvariant items in few groups.

Limitations

As with other studies, there are several limitations in the current study that may

limit the generalizability of the results and require further investigations in future studies.
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First, as with the majority of previous simulation studies, our data generating models only

had one latent variable. Whereas Flake and McCoach (2018) had shown that the alignment

optimization method (AO) performed well with two correlated factors, future research is

needed to evaluate how specification search and Bayesian approximate invariance methods

performed with multiple latent factors in adjusting latent means and latent regression

coefficients among factors. Second, we only simulated continuous indicators that satisfied

the normality assumption, and it is unclear to what degree results may be similar or

different with nonnormal and categorical indicators. Yoon and Kim (2014) suggested that

specification search had somewhat higher false positive rates with polytomous data, while

Flake and McCoach (2018) found AO performed well with polytomous data in large-scale

studies. However, more comprehensive comparisons that include Bayesian methods is

needed for nonnormal data.

Third, in our simulation studies, we assumed that researchers did not have any

substantive knowledge in terms of which items were biased. While this is generally the

norm in the existing measurement invariance literature (e.g., Schmitt & Kuljanin, 2008),

both specification search and Bayesian methods with small variance priors can incorporate

researcher knowledge. In the case of specification search, researchers can choose to only

evaluate a subset of the items for noninvariance; in the case of small variance priors,

researchers can place such priors only on a subset of items they consider close to invariant.

The performance of these two methods may improve with the incorporation of such

knowledge, and future studies can further evaluate this possibility.

Finally, while Muthén and Asparouhov (2014) previously suggested a rule of thumb

that AO worked well in recovering the ordering of the means with 25% or less noninvariant

parameters when the number of groups is large (e.g., > 20), our simulation results showed

that in situations with few groups, AO works reasonably well with 33% noninvariant

parameters, or with 67% noninvariant parameters provided that the direction of

noninvariance balanced out approximately. Our results are thus more consistent with the



COMPARING METHODS FOR ADJUSTING PARTIAL INVARIANCE 32

findings from Marsh et al. (2018), who found that AO worked well with 15 groups, five

items, and 100% noninvariant items (most of which were small noninvariances, but some

were large). This suggested that the performance of AO may depend on both the number

of groups and the magnitudes of noninvariance, and future studies are needed to further

refine the rule of thumbs of when AO may be reasonable to use.
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Table 1
Factor Loadings and Intercepts for Different Noninvariance Patterns in the Data
Generating Model of Study 1.

𝑟ni = 0 𝑟ni = 1/3, balanced 𝑟ni = 1/3, skewed 𝑟ni = 2/3
Parameter G1 & G2 G1 G2 G1 G2 G1 G2

λ1 0.700 0.800 0.600 0.800 0.600 0.800 0.600
λ2 0.700 0.650 0.750 0.750 0.650 0.650 0.750
λ3 0.700 0.800 0.600 0.800 0.600 0.800 0.600
λ4 0.700 0.650 0.750 0.750 0.650 0.650 0.750
λ5 0.700 0.700 0.700 0.700 0.700 0.800 0.600
λ6 0.700 0.700 0.700 0.700 0.700 0.650 0.750
λ7 0.700 0.700 0.700 0.700 0.700 0.800 0.600
λ8 0.700 0.700 0.700 0.700 0.700 0.650 0.750
λ9 0.700 0.700 0.700 0.700 0.700 0.700 0.700
λ10 0.700 0.700 0.700 0.700 0.700 0.700 0.700
λ11 0.700 0.700 0.700 0.700 0.700 0.700 0.700
λ12 0.700 0.700 0.700 0.700 0.700 0.700 0.700
ν1 0.000 -0.250 0.250 0.250 -0.250 -0.250 0.250
ν2 0.000 0.125 -0.125 0.125 -0.125 0.125 -0.125
ν3 0.000 0.000 0.000 0.000 0.000 -0.250 0.250
ν4 0.000 0.000 0.000 0.000 0.000 0.125 -0.125
ν5 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ν6 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ν7 0.000 -0.250 0.250 0.250 -0.250 -0.250 0.250
ν8 0.000 0.125 -0.125 0.125 -0.125 0.125 -0.125
ν9 0.000 0.000 0.000 0.000 0.000 -0.250 0.250
ν10 0.000 0.000 0.000 0.000 0.000 0.125 -0.125
ν11 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ν12 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note. λ = factor loading. ν = measurement intercept. 𝑟ni = proportion of
noninvariant parameters.



COMPARING METHODS FOR ADJUSTING PARTIAL INVARIANCE 41

Table 2
Percentage Empirical Type I Error Rates for Latent Mean
Differences in Study 2.

Noninvariance Pattern 𝑁 𝑝 PI FS AO BAIA-2S
0 50 6 5.7 5.8 1.4 5.7

12 4.9 5.0 2.0 4.9
500 6 5.5 5.8 5.1 5.6

12 4.8 4.8 4.4 4.8
1/3-balanced 50 6 6.6 9.5 2.1 9.3

12 5.4 7.2 2.8 6.6
500 6 5.1 8.0 5.2 7.4

12 4.5 7.0 5.5 6.4
1/3-skewed 50 6 5.2 10.6 1.7 10.4

12 5.7 8.1 3.2 8.8
500 6 5.1 9.2 6.7 7.2

12 5.0 7.4 9.0 7.6
2/3 50 6 5.7 19.9 1.5 13.9

12 4.8 15.0 2.7 9.0
500 6 5.5 75.6 7.8 17.4

12 5.1 75.2 10.4 18.2

Note. 𝑝 = number of items. PI = correctly specified partial
scalar invariance model. FS = forward stepwise specification
search. AO = alignment optimization. BAIA-2S = two-step
Bayesian approximate invariance with alignment. Type I error
rates larger than 7.5% are bolded.
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Table 3
Percentage Empirical Type I Error Rates for Latent Mean Differences in Study 3.

Noninvariance Pattern β1 𝑁 PI FS AO BAO BAIA BAIA-2S
0 {0, 0, 0} 100 6.0 6.0 6.2 6.1 6.2 6.0

500 4.5 4.5 4.5 4.5 4.5 4.5
{0.3, 0.3, 0.3} 100 6.1 6.1 4.7 4.8 4.9 6.1

500 4.4 4.4 3.8 3.8 3.9 4.4
1/3-balanced {0, 0, 0} 100 5.0 4.9 4.8 4.8 4.9 5.0

500 4.7 4.7 4.7 4.7 4.7 4.8
{0.3, 0.3, 0.3} 100 5.0 5.2 3.9 4.0 5.9 5.2

500 5.0 5.4 3.7 3.8 4.6 5.8
1/3-skewed {0, 0, 0} 100 5.6 5.5 5.4 5.4 5.3 5.5

500 4.8 4.8 4.8 4.7 4.8 4.8
{0.3, 0.3, 0.3} 100 4.7 5.2 4.1 4.0 6.8 5.4

500 5.8 6.4 5.0 5.1 7.2 7.5
2/3 {0, 0, 0} 100 5.2 5.2 5.1 5.1 5.0 5.2

500 4.8 4.8 4.8 4.8 4.9 5.0
{0.3, 0.3, 0.3} 100 6.0 6.4 4.6 4.7 7.6 6.6

500 5.4 6.8 4.2 4.1 5.7 8.3

Note. β1 = latent regression coefficients. PI = correctly specified partial scalar invariance
model. FS = Forward stepwise specification search. AO = Alignment optimization with
maximum likelihood. BAO = Bayesian alignment optimization. BAIA = Bayesian
approximate invariance with alignment. BAIA-2S = two-step BAIA. Type I error rates
larger than 7.5% are bolded.
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Figure 1 . Bias of Studied Estimators Relative to the Correctly Specified Partial Invariance
Model in Study 1. FS = Forward stepwise specification search. AO = Alignment optimiza-
tion. BAO = Bayesian alignment optimization. BAIA = Bayesian approximate invariance
with alignment. BAIA-2S = two-step BAIA. α = latent mean (for Group 2). ψ = latent
factor variance (for Group 2). The solid lines represent median biases across sample size and
number of items conditions. The dashed lines represent bias = 0.
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Figure 2 . Relative Efficiency (RE) of Studied Estimators Relative to the Correctly Specified
Partial Invariance Model in Study 1. FS = Forward stepwise specification search. AO
= Alignment optimization. BAO = Bayesian alignment optimization. BAIA = Bayesian
approximate invariance with alignment. BAIA-2S = two-step BAIA. λ = factor loading. ν
= intercept. α = latent mean. ψ = latent factor variance. The solid lines represent median
REs across sample size and number of items conditions. The dashed lines represent RE =
1.0, indicating that the estimator was as efficient as the correctly specified partial invariance
model.
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Figure 3 . Percentage Error Rates of 95% Confidence (or Credible) Intervals in Study 1. FS
= Forward stepwise specification search. AO = Alignment optimization. BAO = Bayesian
alignment optimization. BAIA = Bayesian approximate invariance with alignment. BAIA-
2S = two-step BAIA. λ = factor loading. ν = intercept. α = latent mean. ψ = latent
factor variance. The solid lines represent median error rates across sample size and number
of items conditions. The dashed lines represent error rate = 5%.
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Figure 4 . Relative Efficiency (RE) of Studied Estimators in Study 2. FS = Forward stepwise
specification search. AO = Alignment optimization. BAO = Bayesian alignment optimiza-
tion. BAIA = Bayesian approximate invariance with alignment. BAIA-2S = two-step BAIA.
λ = factor loading. ν = intercept. α = latent mean. ψ = latent factor variance. The solid
lines represent median REs across sample size and number of items conditions. The dashed
lines represent RE = 1.0.
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Figure 5 . Percentage Error Rates of 95% Confidence (or Credible) Intervals in Study 2. FS
= Forward stepwise specification search. AO = Alignment optimization. BAO = Bayesian
alignment optimization. BAIA = Bayesian approximate invariance with alignment. BAIA-
2S = two-step BAIA. λ = factor loading. ν = intercept. α = latent mean. ψ = latent
factor variance. The solid lines represent median error rates across sample size and number
of items conditions. The dashed lines represent error rate = 5%.
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Figure 6 . Relative Efficiency for Estimating Latent Regression Coefficients of the Studied
Estimators in Study 3. FS = Forward stepwise specification search. AO = Alignment
optimization. BAO = Bayesian alignment optimization. BAI = Bayesian approximate
invariance without alignment and with small variance priors. BAIA = Bayesian approximate
invariance with alignment. BAIA-2S = two-step BAIA. The solid lines represent the median
bias across sample size and number of items conditions. The dashed lines represent relative
efficiency = 1.0.
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Figure 7 . Error rates of 95% Confidence (Credible) Intervals for Estimating Latent Regres-
sion Coefficients of the Studied Estimators in Study 3. FS = Forward stepwise specification
search. AO = Alignment optimization. BAO = Bayesian alignment optimization. BAI =
Bayesian approximate invariance without alignment and with small variance priors. BAIA
= Bayesian approximate invariance with alignment. BAIA-2S = two-step BAIA. The solid
lines represent median biases across sample size and number of items conditions. The dashed
lines represent error rate = 5%.
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Appendix

Unique Factor Covariances Among Simulated Data

In Study 1, we added random unique factor covariances W to the indicators, where

10W ∼ LKJ(1) with the shape parameter (eta) = 1. Larger values of the shape parameter

pull entries in W closer to zero. The same realized W was used for all replications and

conditions with same number of items. When 𝑝 = 6, we used the R code

set.seed(1)

ucov <- rethinking::rlkjcorr(1, 6, eta = 1) / 10

which resulted in the covariance matrix

Table A1

1 2 3 4 5 6
.100 -.029 -.022 -.050 .044 -.003
-.029 .100 .047 .042 -.002 -.000
-.022 .047 .100 .063 -.021 .058
-.050 .042 .063 .100 -.071 .070
.044 -.002 -.021 -.071 .100 -.027
-.003 -.000 .058 .070 -.027 .100

The unique factor covariance matrix was similarly generated for conditions with

𝑝 = 12 and 𝑝 = 24, and for Studies 2 and 3 with two different seeds for random number

generation.
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