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Abstract

This paper shows how the concept of reliability of composite scores, as defined in classical test

theory, can be extended to the context of multilevel modeling. In particular, it discusses the

contributions and limitations of the various level-specific reliability indices proposed by Geldhof,

Preacher, and Zyphur (2014), denoted as ω̃b and ω̃w (and also α̃b and α̃w). One major limitation of

those indices is that they are quantities for latent, unobserved level-specific composite scores, and

are not suitable for observed composites at different levels. As illustrated using simulated data in

this paper, ω̃b can drastically overestimate the true reliability of between-level composite scores

(i.e., observed cluster means). Another limitation is that the development of those indices did not

consider the recent conceptual development on construct meanings in multilevel modeling

(Stapleton & Johnson, 2019; Stapleton, Yang, & Hancock, 2016). To address the second

limitation, this paper defines reliability indices (ω2l , ωb, ωw, α2l , αb, αw) for three types of

multilevel observed composite scores measuring various multilevel constructs: individual,

configural, shared, and within-cluster. The paper also shows how researchers can obtain sample

point and interval estimates using the derived formulas and the provided R and Mplus code. In

addition, a large-scale national data set was used to illustrate the proposed methods for estimating

reliability for the three types of multilevel composite scores, and practical recommendations on

when different indices should be reported are provided.

Keywords: multilevel, reliability, composite, alpha, omega
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Composite Reliability of Multilevel Data: It’s About Observed Scores and Construct Meanings

Psychological and social science researchers commonly deal with data with a multilevel

structure, such as students nested within schools and survey participants nested within

neighborhoods. Before analyzing multilevel data with multi-item psychological instruments,

researchers should ensure that their instruments have good score reliability by obtaining and

reporting reliability information of their instruments based on their sample data (Appelbaum et

al., 2018). However, for data of multilevel nature, it is often less straightforward to compute such

information. Geldhof, Preacher, and Zyphur (2014) pointed out that previous studies on reliability

of multilevel data generally conflated reliability within groups and between groups, and have

proposed several statistics to estimate within-level and between-level composite reliability

estimates using multilevel confirmatory factor analysis (MCFA), which I denoted as ω̃b and ω̃w

for between-level and within-level composite reliability, and α̃b and α̃w for between-level and

within-level generalizations of Cronbach’s α (Cronbach, 1951). Since then, many researchers

have adopted their methods.1

However, as to be discussed in this paper, there are two major issues with ω̃b and ω̃w (and

α̃b and α̃w). First, in classical test theory, reliability is a property of observed test scores (e.g.,

Lord, 1955; Thompson, 2003), but the definition of between-level reliability (i.e., ω̃b in Geldhof et

al. (2014) is a property of unobserved, latent cluster means, which ignores the sampling error in

the observed cluster means (see Lüdtke, Marsh, Robitzsch, & Trautwein, 2011, for a detailed

discussion). As a result, and as shown in Jak, Oort, and Dolan (2014), when strong factorial

invariance (Millsap, 2011) across clusters holds, meaning that the measurement intercepts and

factor loadings are the same across all clusters, the ω̃b estimate is always 1.0 regardless of how

unstable the between-level observed composite scores are, and can mislead researchers to think

that the scores of the instrument has very good or perfect reliability. In the present paper, I

demonstrate that ω̃b proposed in Geldhof et al. can be substantially larger than the true reliability

of observed between-level composite scores (i.e., the cluster means of individual composite scores

in a cluster, as explained later in the paper). I also show analytically under what conditions of
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number of clusters, cluster sizes, and intraclass correlations would ω̃b be inflated most when

estimating the reliability of the between-level observed composite scores.

Second, the use of ω̃b and ω̃w implicitly assumes that there are two completely separate

constructs at the within and between levels, measured by two sets of composite scores. However,

in conventional multilevel modeling, researchers sometimes use only the overall composite (i.e.,

composite of raw item scores), and in other times decompose the overall composite into the

within-level and between-level components. In addition, Stapleton et al. (2016) has recently

identified different conceptualizations of constructs in multilevel data with different construct

meanings, but to my knowledge there has not been discussions on how multilevel composite

reliability fits into their framework. In this paper, I propose methods to compute sample reliability

coefficients for the three types of multilevel composite scores, respectively under three

measurement model specifications with different construct meanings (i.e., individual and

configural constructs, shared construct, and within-cluster construct). I then demonstrate the

calculations of three proposed indices using data from the 2007 Trends in International

Mathematics and Science Study (TIMSS; Williams et al., 2009). Finally, I discuss similar issues

with α̃b and α̃w, and propose similar extensions of single-level α to the three types of multilevel

composite scores.

Multilevel Factor Model

To simplify the discussion without loss of generality, I limit the scope to an instrument of p

items measuring one latent construct at both the within and between levels. With slight

differences from the notations used in Geldhof et al. (2014), a multilevel factor model is defined as

Yi j = κ + λ
w
j η

w
i j + λ

b
η

b
j + ζ

w
i j + ζ

b
j, (1)

where Yi j is a vector of p measured variables of the ith individual in the jth cluster, ηwi j and η
b
j are

his or her latent variable scores at the within and the between level, respectively, κ is a vector of p

measurement intercept, λwj is a vector of p within-level factor loadings for cluster j, λb is a vector
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of p between-level factor loadings, and ζb
j and ζ

w
i j are vectors of measurement errors for the p

items at the within and the between levels, respectively. The random variables ηw, ηb, ζw, and ζb

are assumed mutually independent with ηwi j ∼ N(0,φ
w), ηb

j ∼ N(0,φ
b), ζwi j ∼ N(0,Θ

w
j ),

ζb
j ∼ N(0,Θ

b). Researchers commonly assume local independence such that

Θw
j = diag[θw11 . . . θ

w
pp] and Θb = diag[θb

11 . . . θ
b
pp], but composite reliability can still be computed

when such an assumption is violated, as later discussed in this paper. Following Geldhof et al. I

also assume λwj = λ
w (i.e., equal factor loadings across clusters) and Θw

j = Θw (homogeneity of

error covariances across clusters) for all j. Geldhof et al. also made the cross-level loading

equality assumption that λw = λb (see also Jak et al., 2014). A path diagram of the model is shown

in Figure 1.

In classical test theory, reliability is a property of observed scores, as also pointed out in

Geldhof et al. (2014, see also Lord, 1955; Lord & Novick, 1968), so we need to first define the

observed composite scores with multilevel data. Specifically, the overall composite of p items for

person i in cluster j is simply the sum of the p item scores:

Zi j =

p∑
k=1

Yi j k, (2)

where k indexes items. It is defined in the same way as its counterpart in single-level data. In

addition, with multilevel data, researchers commonly perform cluster-mean centering (Enders &

Tofighi, 2007) to disentangle the composite score into the within-level and between-level

components. The between-level observed composite score is

Zb
j =

nj∑
i=1

Zi j/n j, (3)

where n j is the cluster size for j. The within-level composite score is the deviation of the

individual composite score from the group mean, that is,

Zw
i j = Zi j − Zb

j . (4)
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It should be emphasized that all three of Zi j , Zb
j , and Zw

i j are observed scores, and the

decomposition of Zi j into the within-level and the between-level components is the same as the

usual practice of cluster mean centering in multilevel analysis (Enders & Tofighi, 2007). As an

example, a researcher may be interested in using job satisfaction, operationalized as a composite

of multiple self-report items, to predict job performance for employees nested within companies,

and examine whether company-level job satisfaction (Zb
j ) and individual-level job satisfaction

(Zw
i j ) predict job performance differently. The difference between the two prediction coefficients is

commonly denoted as the contextual effect.

Geldhof et al. (2014) defined several between-level and within-level reliability coefficients,

including variants of the traditional coefficient α, composite reliability ω, and maximal reliability

H (Conger, 1980; Hancock & Mueller, 2001). Because they recommended the use of

between-level ω̃b and within-level ω̃w as they had the best performance in their simulation and are

more in line with the multilevel factor model, in the present paper I mainly focus on multilevel ω

coefficients, but also note towards the end how the discussion applies to α. I do not discuss H

given that it refers to reliability of weighted composites that are different from the ones presented

in (2), (3), and (4), and is beyond the scope of the present paper.2 I denote the within-level and

between-level ω coefficients proposed in Geldhof et al. as ω̃b and ω̃w here to distinguish them

from the indices proposed in this paper, where

ω̃
b =

(
∑p

k=1 λ
b
k)

2

(
∑p

k=1 λ
b
k)

2 +
∑p

k=1 θ
b
kk

(5)

ω̃
w =

(
∑p

k=1 λ
w
k )

2

(
∑p

k=1 λ
w
k )

2 +
∑p

k=1 θ
w
kk

. (6)

The above equations assume that ηb
j and η

w
i j have been standardized such that φ

b = φw = 1 and

that local independence holds at both levels. When local independence is violated, the unique

factor covariances need to be added to the denominator for both equations (5) and (6). Without the

assumption of local independence and the condition that φb and/or φw are standardized,
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equations (5) and (6) become:

ω̃
b =

(
∑p

k=1 λ
b
k)

2φb

(
∑p

k=1 λ
b
k)

2φb + 1′Θb1
, (7)

ω̃
w =

(
∑p

k=1 λ
w
k )

2φw

(
∑p

k=1 λ
w
k )

2φw + 1′Θw1
. (8)

where 1′Θb1 =
∑p

k=1
∑p

k ′=1 θ
b
kk ′ and 1′Θw1 =

∑p
k=1

∑p
k ′=1 θ

w
kk ′ are the sums of all elements in Θb

and Θw, respectively. As can be seen, ω̃b represents the proportion of variance explained by ηb at

the between level, and ω̃w represents the proportion of variance explained by ηw at the within level.

Although the definitions of ω̃w and ω̃b may seem straightforward and intuitive, I identify

two issues that make these indices potentially problematic in practice, namely (a) that they are

properties of the composite of latent, unobserved variables at the between-level and within-level,

but in classical test theory, reliability is a property of observed composite scores, and (b) that they

do not take into account the different types of multilevel constructs with different meanings as

discussed in Stapleton et al. (2016). Below I detail the two issues, and propose alternative indices

that both are reliability indices of observed composite scores and fit into Stapleton et al.’s

framework.

Issue I: ω̃b and ω̃w Are Reliability Indices of Unobserved, Latent Scores

As pointed out earlier, in classical test theory, reliability is a property of observed test score,

not of any latent or abstract construct. This point was also discussed in Geldhof et al. (2014).

Indeed, in single-level analysis, ω is called composite reliability because it was derived as the

reliability of the observed composite score—the unweighted sum of item scores. It is defined as

the proportion of variance of the composite score attributable to the true score.

In classical test theory, an observed test score Yi for person i is decomposed as

Yi = Ti + ei (9)
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where Ti is the expected value of Yi, also called the true score, and ei is the random error

component. Reliability is then defined as the squared correlation between Y and T , which is also

equal to the variance of T divided by the variance of Y (Lord & Novick, 1968, Chapter 3).

Therefore, to understand ω̃b and ω̃w, it is important to know what their corresponding

scores are. The derivation in Geldhof et al. (2014) implicitly uses latent mean centering

(Asparouhov & Muthén, 2019; Lüdtke et al., 2008) in the multilevel structural equation modeling

framework by defining

Yi j = Yb(l)
j + Yw(l)

i j , (10)

Yb(l)
j = κ + λb

η
b
j + ζ

b
j, (11)

Yw(l)
i j = λwj η

w
i j + ζ

w
i j, (12)

where Yb(l)
j = [Y b(l)

j1 · · ·Y
b(l)
jp ] contains the latent, error-free item means of cluster j, and

Yw(l)
i j = [Yw(l)

i j1 · · ·Y
b(l)

i jp ] contains the deviation scores of individual i in cluster j from the latent

cluster means. The (l) superscript is used to make clear that Yb(l) and Yw(l) are latent, unobserved

variables. Thus, they are represented by circles in Figure 1. Under this representation, and from

equations (7) and (8), it is clear that ω̃b is the composite reliability of the sum score of the latent

cluster means of p items, Zb(l)
j =

∑p
k=1 Y b(l)

j k , and ω̃w is the composite reliability of the sum score

of the deviation scores of p items from the latent cluster means, Zw(l)
i j =

∑p
k=1 Yw(l)

i j k .

The problem is, of course, that Zb(l) and Zw(l) are not observed variables, whereas in

classical test theory, the focus is on decomposing the observed scores into components of true

scores and random errors (Lord & Novick, 1968). Indeed, in single-level analysis, composite

reliability ω (as well as α) is meaningful because it represents the proportion of true score

variance in the observed composite scores (Raykov, 1997; Thompson, 2003), and the observed

composite scores are the imperfect scores that test users can obtain for assessment, classification,

and other research purposes. Otherwise, if one computes the reliability of an unobserved score,

such as the true score T in equation (9), one very likely obtains an unrealistically high reliability.
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In the case of the true score T , because there is no random error in it, the reliability of T is always

perfect but meaningless, because we cannot directly obtain T . The same is true for multilevel data:

reliability should be defined for observed but not latent scores.

Consider the observed composite, Zb
j , and the latent composite, Zb(l)

j , at the between level.

In practice, unless one has an infinitely large cluster size, the observed sample mean of item k in a

cluster of size n j , Ȳj k =
∑nj

i=1Yi j k/n j , will be different from the latent cluster mean Y b(l)
j k . For

example, if Zb
j represents the mean job satisfaction score of a sample of employees in a company,

it is only an estimate of and is not the same as Zb(l)
j , the true mean of the company, unless the

sample contains everyone in the company. The sampling error of Zb
j has a variance of

Var(Yw(l)
j k )/n j . Therefore, Zb

j , which is the unweighted sum of the sample cluster means across all

items, has two sources of error, namely measurement error of the items at the between level (i.e.,

θb), as well as the sampling error corresponding to the difference between Zb
j and Zb(l)

j . These two

sources of error were thoroughly discussed in Lüdtke et al. (2011, see also Raykov &

Marcoulides, 2006).3 Because ω̃b only captures one source of error, generally it overestimates the

true composite reliability of Zb
j . The following simulation provides further evidence for that.

Illustration of the Bias of ω̃b

To illustrate the bias of ω̃b, I simulated a large sample based on the model shown in Figure 1

and defined in (10) to (12), with five items, 10,000 clusters of size 10, φw = 1, φb = 0.25, mean of

η = 0, and for all items κ = 0, λb = λw = 0.5, θw = 1, θb = 0.1. I set the number of clusters to be

large so that the parameter and reliability estimates are close to the population values. The

simulation code is included in the supplemental material. In the data generation process, I first

simulated the unobserved ηb values for each cluster and the ηw values for each individual, which

are used to compute Yb and Yw. The observed variable scores are then obtained as Y = Yb + Yw.

I also computed the observed cluster means, Ȳj1, . . . , Ȳjp, for each item and for every cluster j.

Using the definition of reliability from classical test theory, I computed the squared correlation of

the between-level observed composite, Zb, with the true latent factor score, that is, [Corr(Zb, ηb)]2,
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as the true reliability of Zb. I also computed ω̃b as defined in Geldhof et al. (2014). If ω̃b

measures the reliability of the observed composite Zb, it should be close to [Corr(Zb, ηb)]2;

however, given the previous discussion, I expected ω̃b to be larger than [Corr(Zb, ηb)]2, because of

the substantial sampling error in the observed cluster means due to a small cluster size of 10.

Using the simulated data set, [Corr(Zb, ηb)]2 = .490, which is the true reliability of the

observed composite of cluster means. However, the ω̃b estimate was .756, which overestimated

the true reliability of Zb by 54%. On the other hand, the squared correlation between the latent

composite and the true latent factor score at the between level is [Corr(Zb(l), ηb)]2 = .756,

confirming that ω̃b estimates the reliability of the composite score of latent cluster means.

Therefore, ω̃b can be highly misleading when used to justify the measurement quality of

between-level composite scores in multilevel analysis, especially when the cluster size is small.

Consequences of overestimated reliability. Because ω̃b can drastically overestimate the

reliability at the between level, it potentially leads to inflated reliability information of the

measurement in published research that involved multilevel data. For example, using ω̃w and ω̃b,

Rush and Hofer (2014) reported that the score reliability coefficients of positive and negative

affects were .80 to .84 at the within-person level, but were much higher at .94 to .97 at the

between-person level. The inflated ω̃b values may give researchers a false sense of confidence in

their measurement when doing multilevel analyses.

The inflated between-level reliability indicated by ω̃b or α̃b was perhaps most problematic in

scale development and validation. For example, in the development of the Instructional Skills

Questionnaire, Knol, Dolan, Mellenbergh, and van der Maas (2016) presented only the

teacher-level α̃b, which were between .90 and .99, in the main text as evidence for reliability, and

presented the student-level α̃w, which were between .49 and .79, in supplemental material.

Although the authors were correct to use a teacher-level reliability coefficient as the instrument is

intended to give teacher-level scores as mean scores across student raters, the inflated α̃b values

made the reliability of the teacher scores looked much better than they were. For example, using

equation (19) to be discussed in a later section, the teacher-level composite scores from the
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Instruction subscale in Knol et al. (2016), which had α̃b reported as .90, only had a true αb of .76

(assuming an ICC of .06 as reported in the paper), after taking into account the sampling error for

a class size of 82. If another researcher uses the same subscale to measure instruction quality

based on a class size of 25, the expected reliability of the teacher scores will only be .56, which

says that the scores are much less stable than what was presented as α̃b = .90.

Issue II: ω̃b and ω̃w Do Not Take Into Account Different Kinds of Multilevel Constructs

Based on the seminal work by Kozlowski and Klein (2000) and Marsh et al. (2012),

Stapleton et al. (2016) and Stapleton and Johnson (2019) identified four possible types of

constructs in a multilevel CFA setting, including (a) an individual construct, where the construct

is defined at the within level but possibly has nonzero intraclass correlations across clusters (e.g.,

social skill of an individual), (b) a configural construct, also called a contextual construct by

Marsh et al., which consists of cluster averages of individual constructs (e.g., mean student

achievement of a school), (c) a shared construct, also called a climate construct by Marsh et al.,

where a construct is defined purely at the between level and is inherently a characteristic of a

cluster (e.g., school climate), and (d) a within-cluster construct, where the comparison of a

construct is only meaningful within a cluster but not across clusters (e.g., sociometric ratings

within a classroom). These four types of constructs, and the corresponding MCFA specification,

are discussed below, followed by a discussion of the proposed methods to compute reliability for

the three composite scores (i.e., Zi j , Zb
j , Zw

i j ). The corresponding R (R Core Team, 2019) and

Mplus (L. K. Muthén & Muthén, 2017) code for computing the proposed reliability indices can be

found in the supplemental material.

Individual Construct

Individual constructs are generally the most common in psychological and behavioral

research. An example MCFA model of an individual construct with four items, decomposed into

Yb(l) and Yw(l), is shown in Figure 1. Note that under the MCFA framework, even though there is

only one individual construct, the distribution of the latent variable, η, will be decomposed into
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the between-level component, ηb, and the within-level component, ηw. If η is an observed

variable, this decomposition is no different from the usual practice of decomposing a variable into

the between-level and within-level components in multilevel modeling (Asparouhov & Muthén,

2019; Enders & Tofighi, 2007). In such a model, ηb
j is the population cluster mean for cluster j,

and ηwi j is the individual-level deviation of person i from the cluster mean. By the definition of an

individual construct, the factor loadings need to be constrained to be equal (i.e., λb = λw) so that

ηb and ηw are on the same metric (Jak et al., 2014; Stapleton et al., 2016), and the intraclass

correlation of η is ηb/(ηb + ηw) (Mehta & Neale, 2005). The residual variances and covariances

among Y b(l) reflect either additional shared construct at the cluster level (Stapleton et al., 2016) or

violations of measurement invariance across clusters (Jak et al., 2014).4

Configural Construct

Stapleton and Johnson (2019) referred to ηb
j in Figure 1, which consists of the latent cluster

means of the individual construct η, as a configural construct. Although such a distinction of the

various components of a latent variable was only recently made, the practice of cluster-mean

centering has been the standard in traditional multilevel modeling. When researchers perform

cluster-mean centering, it is commonly expected that the between-level and the within-level

components may have differential associations with other variables. A classic example is the

“big-fish-little-pond” effect (Marsh, 1987), where it was found the association between

student-level ability and academic self-concept was generally positive, but the association between

school-average ability and school-average self-concept was generally negative and smaller. As a

result, with cluster-mean centering, the two components of an individual construct are treated as

two separate constructs, and a configural construct refers to the between-level component.

Reliability of composites measuring individual and configural constructs. Because

individual and configural constructs are part of the same model, I discuss the reliability of the

corresponding composites together based on the model in Figure 1. When the overall composite

(Zi j) is used to measure an individual construct, such as social skill and IQ, because the scores can
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be compared both within a cluster and across clusters, the true score variance should include both

Var(ηb) = φb and Var(ηw) = φw; in other words, the true score variance is Var(η) = φb + φw.

Therefore, the composite reliability of Zi j measuring an individual construct, ω2l , is

ω
2l =

(
∑p

k=1 λk)
2(φw + φb)

(
∑p

k=1 λk)
2(φw + φb) + 1′Θb1 + 1′Θw1

. (13)

Note that equation (13) is essentially identical to the two-level composite reliability derived in

Raykov and du Toit (2005, p. 540, equation 10). Compared to ω̃w in equation (8), ω2l captures the

population variance of both the within-level and the between-level components of the true score

and of the errors.

In addition, for an individual construct, when cluster-mean centering is used to decompose

the overall composite into the between-level composite (Zb
j ) and the within-level composite (Zw

i j ),

reliability should be computed for these two composites. For the composite deviation score Zw
i j ,

the variance is

Var(Zw
i j ) =

n j − 1
n j


( p∑

k=1
λk

)2

φ
w + 1′Θw1

 . (14)

Therefore, the true score variance component is [(n j − 1)/n j](
∑p

k=1 λ
w
k )

2φw. When defining the

reliability of Zw
i j as the true score variance divided by Var(Zw

i j ), the constant (n j − 1)/n j will be

canceled out. Therefore, the reliability of Zw
i j is

ω
w =

(
∑p

k=1 λk)
2φw

(
∑p

k=1 λk)
2φw + 1′Θw1

, (15)

which is the same as ω̃w as defined in equation (8).

For the reliability of Zb
j , the between-level composite, first note that observations within a

cluster share the same latent cluster means Yb(l) but are conditionally independent. Thus, within a

cluster j and for i , i′, Cov(Yi j,Yi′ j) = Var(Yb(l)) = φbλλ′ +Θb, whereas the variance of each

observation is Var(Yi j) = Var(Yb(l)) = (φb + φw)λλ′ +Θb +Θw. This implies that the covariance

matrix of the observed cluster item means is Var(Ȳ j) = (φb + φw/n j)λλ
′ +Θb +Θw/n j , which
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depends on the cluster size n j (see also Raudenbush & Bryk, 2002, Chapter 3). Therefore, the

variance of Zb
j is

Var(Zb
j ) =

( p∑
k=1

λk

)2

(φb + φw/n j) + 1′Θb1 + 1′Θw1/n j, (16)

where (
∑p

k=1 λk)
2φw/n j + 1′Θw1/n j is the sampling error variance of the observed cluster means.

Assuming equal cluster size such that n j = n for all j, the reliability of the between-level

composite is

ω
b =

(
∑p

k=1 λk)
2φb

(
∑p

k=1 λk)
2(φb + φw/n) + 1′Θb1 + 1′Θw1/n

. (17)

When cluster sizes are not equal, the reliability will be different for clusters with different cluster

sizes. In that case, one way to define an overall measure of reliability is to first obtain the mean

variance of Zb as E[Var(Zb)] = (
∑p

k=1 λk)
2(φb + φw)/ñ + 1′Θb1 + 1′Θw1/ñ, where

ñ = 1/(
∑J

j=1 1/n j) is the harmonic mean of cluster sizes. Then, the between-level composite

reliability can be obtained by simply replacing n j in equation (17) by ñ. Note that this use of

harmonic mean is consistent with previous literature in multilevel modeling when considering the

reliability of cluster means of observed variables (e.g., Kwok et al., 2008).

It should be pointed out that although the between-level and the within-level components of

an individual construct are parts of the same construct, the two parts nevertheless may have

differential relationships with other variables. Therefore, the two components of an individual

construct are usually treated as two separate variables, in which case both ωb and ωw should be

reported. Furthermore, even when a researcher only uses the overall composite without

decomposition for his or her research, future researchers may use the same instrument with

decomposition into the between-level and within-level components. Therefore, to facilitate

comparisons across research, I recommend always reporting ω2l , ωb, and ωw for an individual

construct with multilevel data, especially for research involving scale development.

Relationships between ω2l and ω̃ (ω̃b and ω̃w). To more precisely understand the

relationship between ω̃w, ω̃b, and ω2l for overall composites measuring individual constructs, one
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should note that from equations (7) and (8), equation (13) can be expressed as:

ω
2l = (1 − ρZ )ω̃

w + ρZω̃
b, (18)

where ρZ = Var(Zb)/Var(Z) is the intraclass correlation of the observed composite Z . Therefore,

the true reliability of the overall composite scores of an individual construct is a weighted average

of ω̃w and ω̃b, and ω̃w = ω2l only when ρZ = 0 or when ω̃b = ω̃w. Otherwise, the bias of ω̃w as an

estimator of ω2l is [ρZ/(1 − ρZ )](ω
2l − ωb), which is larger for larger ρZ and larger difference

between ω2l and ω̃b. For example, when ω2l = .8, with a small ICC of .05 for Z and a low ω̃b of

.60, the bias is only .01; however, with a larger ICC of .40 for Z and a perfect ω̃b of 1.0 (which

happens when strong factorial invariance across clusters holds, as previously discussed), ωw will

be .67, which severely underestimates the reliability of an observed composite of an individual

construct.

Similarly, to understand the bias when using ω̃b to approximate ωb, note that equation (17)

can be expressed as:

ω
b = ω̃b ρZ

ρZ + (1 − ρZ )/ñ
. (19)

Because the largest possible value of ω̃b is 1.0, the largest possible value of ωb is

ρZ/[ρZ + (1−ρZ )/ñ], which can be much smaller than 1.0 when cluster size is small. For example,

when ρZ = .3, ñ = .5, the maximum of ωb is .3/(.3 + .7/5) = .68. The bias of ω̃b as an estimator

of ωb is (1 − ρZ )ω̃
b/ñ/[ρZ + (1 + ρZ )/ñ], which is zero only when ω̃b = 0 (i.e., when there are no

true score variance), when ρZ = 1 (i.e., when there is no level-1 variability), or when ñ is a huge

number such that ñ→∞. Therefore, whereas ω̃b can be an approximation of the reliability of the

between-level composite when the cluster size is large, or a theoretical upper bound of ωb, it

generally gives an inflated reliability coefficient, especially with smaller ρZ and smaller ñ.

A special case is when strong invariance across clusters holds, which, as discussed in Jak et

al. (2014), will always result in ω̃b = 1, regardless of how small the cluster size and the ICC of Z

is. If one is interested in using the between-level composite to measure a configural construct such
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as school-level achievement, but the scores across students in a school are highly spread out, then

one should expect to get very different group means when different samples of students are

surveyed. In that case, the actual reliability of the group-level composite should be low, but one

can still get ω̃b = 1.

Shared Construct

Based on the discussion in Stapleton et al. (2016), an example MCFA model of a shared

construct with four items is shown in Figure 2. What makes a shared construct different from a

configural construct is that it is inherently an attribute of a cluster but is measured by multiple

informants at the within level. Examples include safety of a neighborhood, effectiveness of a

teacher, and organizational climate (e.g., Liao & Chuang, 2007). The teacher-level constructs

measured by the Instructional Skills Questionnaire (Knol et al., 2016) presented earlier are also

shared constructs. In these situations, within-level variations are not true score variance at the

between level, so a saturated within-level model is specified with Cov(Yw(l)) = Σw, and a

unidimensional factor model is specified at the between level to reflect the shared construct.

Reliability of composites measuring a shared construct. For a shared construct

measured by the between-level composite, Zb
j as defined in equation (3), the reliability ω

b is

similarly computed as in (17) for the model with an individual and a configural construct, except

that now the within level is a saturated model. The corresponding composite reliability for Zb
j

measuring a shared construct is thus

ω
b =

(
∑p

k=1 λ
b
k)

2φb

(
∑p

k=1 λ
b
k)

2φb + 1′Θb1 + 1′Σw1/ñ
, (20)

As discussed in Stapleton and Johnson (2019), it is also possible that items intended to

measure a shared construct also measure an individual construct at the within level, resulting in an

additional configural component at the between level. In this situation, the reliability coefficient

in (20) for the between-level composite reflects its consistency for simultaneously measuring a

shared and a configural constructs. However, researchers may be more interested in the proportion
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of true score variance due to only the shared construct, in which case the simultaneous

shared-and-configural model proposed in Stapleton et al. (2016) and Stapleton and Johnson

should be used. In the Appendix I presented an example and extensions of ω for a shared

construct under this simultaneous shared-and-configural model.

Within-Cluster Construct

An example MCFA model of a within-cluster construct with four items is shown in

Figure 3. Here, the latent variable is only meaningful at the within level and is denoted as ηw. An

example of a within-cluster construct is students’ popularity among their peers within the same

classroom based on some sociometric ratings, such that each student is only compared to other

students in the same classroom, but not to others in different classrooms. In this case, any

variations across classrooms, if any, should be irrelevant to the construct. Thus, a saturated

between-level model is used.

Reliability of composites measuring a within-cluster construct. For a within-level

composite, Zw
i j , measuring a within-cluster construct, the composite reliability is

ω
w =

(
∑p

k=1 λ
w
k )

2φw

(
∑p

k=1 λ
w
k )

2φw + 1′Θw1
, (21)

which is essentially the same as (15), except that the factor loadings are specific to the within level

as the between-level model is a saturated one.

Empirical Illustration

To illustrate the differences between the two ω̃ coefficients and the three ω coefficients

presented in this paper, I revisit the applied example analysis from the 2007 Trends in

International Mathematics and Science Study (TIMSS Williams et al., 2009) as described in

Geldhof et al. (2014). In the example, 7,896 students from 515 schools in the United States

responded to four items on attitudes toward math (AS4MAMOR: Would like to do more math,

AS4MAENJ: I enjoy learning mathematics, AS4MALIK: I like math, and reverse coded AS4MABOR:
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Math is boring). The items were scored on a 4-point scale from 1-agree a lot to 4-disagree a lot.5

There were 2.1% to 3.7% of missing data on the four items; following Geldhof et al. (2014) I only

analyzed data with scores on all four items, resulting in an analytic sample size of 7,475. Table 1

shows the within-level and between-level interitem correlations and covariances based on a

saturated multilevel structural equation modeling model using maximum likelihood estimation in

lavaan (Rosseel, 2012).

Using the level-specific indices by Ryu and West (2009), a one-factor model at the within

level with a saturated between-level model produced acceptable fit, χ2(df = 2, N = 7, 475) = 6.11,

p = .047, RMSEA = .017, 95% CI [.002, .032], CFI = 1.00. At the between-level an initial

one-factor model resulted in a small but negative (θ = −0.001) unique factor variance estimate for

AS4MAEN; given the small value, I fixed it to zero. The fit of the one-factor between-level with a

saturated within-level model produced reasonable fit, χ2(df = 3, N = 7, 475) = 6.18, p = .103,

RMSEA = .064, 95% CI [0.00, 0.14], CFI = .988. An MCFA with equal factor loadings across

levels showed good fit, with overall χ2(df = 8, N = 7, 475) = 40.11, p < .001, RMSEA = .023,

95% CI [.016, .031], CFI = .998; SRMR-within = .004 and SRMR-between = .054. However,

likelihood ratio test showed that the loading constraints resulted in worse model fit, ∆χ2(df = 4) =

28.06, p < .001, suggesting that there might be additional shared constructs at the between-level.

Nevertheless, for illustrative purpose, I first computed reliability coefficients assuming

unidimensionality at both levels for an individual construct.

The MCFA with equal loading constraints represents the specification of an individual

construct with a configural component. The parameter estimates, using the lavaan syntax shown

in the supplemental material, are given in Table 2. The estimated overall ω2l = .867 for the overall

composite, 95% Wald CI [.862, .873], so the reliability was good for the overall composite score

for measuring an individual-level constructs. For the within-level composite, ω̃w = .861, 95% CI

[.855, .866], so in this example ω̃w was slightly smaller than ω2l . Finally, ω̃b = .622 for the

between-level composite, 95% CI [.560, .684]. Therefore, the between-level composite was

relatively low on reliability. In contrast, ω̃b, which ignores the sampling error due to within-level
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variability, was estimated to be .975, 95% Wald CI [.964, .987]. Therefore, if one were to use ω̃b,

one would mistakenly think that the observed composite of the cluster item means had

close-to-perfect reliability, when the actual composite reliability was suboptimal in measuring a

configural construct.

Because the four items mainly focus on students’ attitudes towards math, with the students

themselves being the subject of measurement, it is most natural that researchers would use the

composite scores of the four items to measure an individual construct (with a configural

component). However, for illustrative purpose, if the four items were to be used to measure a

within-cluster construct that can only be compared within a cluster, meaning that one intends to

compare students’ attitudes toward math within each school, but not across schools, a saturated

between-level model should be used. In this case, ω̃w was similarly estimated to be .860, 95%

Wald CI [.855, .865].

Because these four items mainly asked students’ individual characteristics with no reference

to intrinsic attributes of schools (e.g., teaching quality or school climate), they are not suitable for

measuring shared constructs at the school level. An example involving the between-level

composite reliability defined in (20) with items designed to measure a shared construct can be

found in the Appendix, which also includes discussion on how reliability can be defined when the

between-level composite measures both a shared and a configural construct.

Extension of Cronbach’s Alpha (α) for Multilevel Composites of Different Construct

Meanings

Here I briefly describe the extension of α to multilevel observed composites, which is

largely similar to the discussion of ω. In single-level analyses, α (Cronbach, 1951) for a composite

score Z is estimated by the ratio between the average covariance of the item scores and the total

variance of the mean score. Assuming that the covariance matrix of p items is Σ with elements

σi j , then α can be computed as

α =
2p

∑p
k=2

∑k−1
k ′=1 σkk ′

(p − 1)1′Σ1
. (22)
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With multilevel data, similar to my previous discussion on ω2l , α2l for the overall observed

composite can be obtained as

α
2l =

2p
∑p

k=2
∑k−1

k ′=1(σ
w
kk ′ + σ

b
kk ′)

(p − 1)[1′Σb1 + 1′Σw1]
. (23)

It should be pointed out that α does not require estimations of parameters of a factor model, so its

computation is the same whether a composite is used to measure a configural construct or a shared

construct. For a between-level composite,

α
b =

2p
∑p

k=2
∑k−1

k ′=1 σ
b
kk ′

(p − 1)[1′Σb1 + 1′Σw1/ñ]
, (24)

where ñ is the harmonic mean of the cluster sizes. For a within-level composite,

α
w =

2p
∑p

k=2
∑k−1

k ′=1 σ
w
kk ′

(p − 1)1′Σw1
. (25)

When the essential tau-equivalence condition holds, which implies that the factor loadings

are the same for all items, ω and α represents the same population quantities (assuming

unidimensionality). It is thus not surprising that the relationships between the above α coefficients

with those defined by Geldhof et al. (2014) (which I called α̃b and α̃w) are similar to those

between ω and ω̃ coefficients as previously discussed. Note that point estimates of α2l , αw, and αb

only require estimates of the within-level and between-level item covariances, such as those

presented in Table 1, but the corresponding standard error and interval estimates require

additional information such as the asymptotic covariance matrix from a fully saturated MCFA

model. For the TIMSS example, using the lavaan syntax shown in supplemental material, all α

and α̃ estimates were similar to the ω and ω̃ estimates (see Table 3). Specifically, α2l for the four

attitudes toward math items was estimated to be .868, 95% Wald CI [.862, .873], which was

slightly larger than the estimated α̃w = .859, 95% Wald CI [.854, .865]. The estimate of αb was

.653, 95% Wald CI [.594, .711], which was much smaller than α̃b = .968.
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Notes on Confidence Intervals

The confidence intervals presented in the previous section were based on the asymptotic

standard errors of the reliability coefficients using the delta method in standard SEM software.

Geldhof et al. (2014) recommended two methods that should give more valid CIs with better

coverage properties, namely the Monte Carlo CIs and the Bayesian credible intervals. I refer

readers to Preacher and Selig (2012) for a discussion on the Monte Carlo CI and to B. Muthén and

Asparouhov (2012) on Bayesian credible interval. For the TIMSS example, given the relatively

large sample size, the different methods of computing interval estimates of multilevel reliability

basically yielded the same results, as shown in Table 3. The supplemental material includes R

codes and Mplus syntax for obtaining these two alternative types of interval estimates for the

previous illustrative example.

Discussion

In this paper, I provide an updated perspective on how reliability should be defined for

different kinds of constructs with multilevel data. In particular, I point out two limitations with the

definitions of level-specific reliability provided in Geldhof et al. (2014), namely that they are

measures of reliability of hypothetical, latent variables, but not observed variables, and that they

do not consider different construct meanings that were recently proposed in Stapleton et al. (2016)

and Stapleton and Johnson (2019). Recognizing such limitations in the existing literature on

multilevel reliability, I provide reliability definitions for raw, between-level, and within-level

composites when measuring various multilevel constructs: individual, configural, shared, and

within cluster. These include extensions of the single-level composite reliability ω, a model-based

index that does not require the essential tau equivalence assumption, to multilevel ω2l for overall

composite, ωb for between-level composite, and ωw for within-level composite, and extensions of

the single-level Cronbach’s α, which assumes essential tau equivalence but does not require fitting

a factor model, to multilevel α2l , αb, and αw. I have also showed how sample point and interval

estimates of the six different reliability indices can be computed, provided reproducible R and
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Mplus syntax, and illustrated the biases of the reliability statistics in Geldhof et al. (2014)

analytically and through a simulated data set.

Reporting of reliability information is a basic requirement for empirical studies (Appelbaum

et al., 2018; Flake, Pek, & Hehman, 2017), yet when it comes to multilevel constructs, Kim,

Dedrick, Cao, and Ferron (2016) found that almost half (46%) of the studies they reviewed that

used multilevel factor analysis did not report reliability information. I believe that the discussion

of the six reliability coefficients for commonly obtained composite scores with multilevel data in

the current paper will facilitate the reporting practices of such information in empirical multilevel

studies. I urge researchers to consider the nature of their constructs, and report the corresponding

reliability information as in single-level studies. In addition, just like any other point estimates,

simply presenting ω or α estimates do not provide information about the uncertainty associated

with those point estimates, so I also urge applied researchers report the corresponding confidence

intervals using the procedures illustrated in the supplemental material.

I would like to emphasize again that when one should report ω2l , ωb, and/or ωw (and

similarly for the αs) depends on what types of composite scores are computed. For example, for

an individual construct such as life satisfaction, if one uses the overall composite and does not

center the scores or uses grand mean centering in multilevel analyses, one should compute ω2l .

However, if one uses group mean centering (with latent or observed group means; see Asparouhov

& Muthén, 2019) to decompose the scores, which is generally the recommended procedure in

multilevel modeling, one should compute both ωb and ωw as the between-level and within-level

components are treated as two different variables and can have differential associations with other

variables. To facilitate comparisons across studies and provide comprehensive evaluations of the

measurements, a good strategy would be to always report all three of ω2l , ωb, and ωw (or all three

of α2l , αb, and αw) for individual constructs.

Although the proposed reliability coefficients take into account different construct meanings

and are properties of observed scores, several assumptions need to hold in order for them to be

meaningful. As previously discussed, one assumption is that the latent factor variance is constant
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across clusters. Although this homogeneity of variance assumption is regularly made in multilevel

modeling, with MCFA the factor variance can be modeled as random as discussed in Stapleton et

al. (2016), and with such a model the ω and α coefficients I discussed need to be adapted. Future

research efforts can generalize the proposed reliability coefficients to account for heterogeneous

factor variances. Similarly, the discussion in this paper assumes measurement invariance across

clusters, which is also a testable assumption (Jak et al., 2014). When measurement parameters,

such as factor loadings and unique factor variances, are allowed to vary across clusters, it implies

different reliability across clusters, and it is a future research question whether an overall

reliability measure makes sense and if not, how alternative reliability indices should be defined.

Finally, in the current paper I assume that the sample cluster size is only a small fraction of the

population cluster size when quantifying the sampling error of the between-level observed

composite (Lüdtke et al., 2011). However, when the population cluster size is small (e.g., 25

students in a classroom) and the sample cluster size represents a large proportion of the population

cluster size, the sampling error variance needs to be adjusted by a finite population correction

factor (e.g., Lai, Kwok, Hsiao, & Cao, 2018). Future research is needed to discuss how reliability

indices can incorporate such a correction factor for finite clusters.
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Footnotes

1On November 29, 2019, which was about five years following the publication of Geldhof et al. (2014), the paper

has been cited 461 times according to Google Scholar.
2Also, Geldhof et al. (2014) noted that H had suboptimal performance and did not recommend its use. It is not clear,

however, whether the performance would improve if the multilevel extensions of H takes into account the sampling

variability of the cluster means for the between-level weighted composites.
3See Raudenbush and Bryk (2002, p. 46) for the reliability of cluster-level estimates for variables that are assumed

to be measurement error-free.
4Stapleton et al. (2016) also discussed a more general model where the within-level variance of ηw can vary across

clusters, but for simplicity and as a common practice, I assumed homogeneous variances of ηw across clusters in this

paper.
5The items were scored on a 4-point scale, so MCFA for continuous variables could lead to biases in factor loadings

and also in reliability of composite scores. I used continuous MCFA only so that results can be compared to Geldhof

et al. (2014). Composite reliability for categorical items are beyond the scope of this paper.



MCFA COMPOSITE RELAIBILITY 30

Table 1
Interitem Covariances and Correlations of
Attitude Toward Math Items

1 2 3 4

Within-Level
AS4MAMOR 1.17 .62 .61 .51
AS4MAENJ 0.64 0.92 .74 .59
AS4MALIK 0.68 0.73 1.05 .59
AS4MABORr 0.59 0.61 0.66 1.18

Between-Level
AS4MAMOR 0.11 .94 .89 .83
AS4MAENJ 0.07 0.05 .98 .95
AS4MALIK 0.07 0.06 0.06 .95
AS4MABORr 0.06 0.05 0.05 0.05

Note. The covariances (correlations) were
shown in the lower (upper) diagonal entries.
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Table 2
Parameter Estimates of a Multilevel
Confirmatory Factor Model for the
Empirical Illustration

Estimate SE LL UL

λw1 0.79 0.01 0.76 0.81
λw2 0.82 0.01 0.80 0.84
λw3 0.88 0.01 0.86 0.90
λw4 0.75 0.01 0.73 0.77
θw11 0.56 0.01 0.54 0.58
θw22 0.24 0.01 0.23 0.25
θw33 0.27 0.01 0.26 0.29
θw44 0.62 0.01 0.60 0.64
φw

11 1.00 0.00 1.00 1.00
λb

1 0.79 0.01 0.76 0.81
λb

2 0.82 0.01 0.80 0.84
λb

3 0.88 0.01 0.86 0.90
λb

4 0.75 0.01 0.73 0.77
θb

11 0.03 0.00 0.02 0.04
θb

22 0.00 0.00 0.00 0.00
θb

33 0.00 0.00 −0.00 0.00
θb

44 0.01 0.00 −0.00 0.01
φb

11 0.08 0.01 0.06 0.10
Note. SE = Standard Error. LL, UL =
lower and upper limits of 95% confidence
intervals.
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Table 3
Reliability Coefficients for Composite Scores in the Real Data Illustration, and Their Estimates for
the Empirical Example

Type of
Composites Model Reliability

Coefficients
Equation
in text Est 95% Wald

CI
95% MC

CI
95% Bayesian

CrI

Overalla Individual ω2l (13) .87 [.86, .87] [.86, .87] [.86, .87]
— α2l (23) .87 [.86, .87] [.86, .87] [.86, .87]

Between- Configural ωb (17) .62 [.56, .68] [.55, .68] [.56, .69]
Levelb — αb (24) .65 [.59, .71] [.58, .70] [.60, .72]
Within- Individual ωw (8), (15) .86 [.86, .87] [.86, .87] [.86, .87]
Cluster Within ωw (21) .86 [.86, .87] [.85, .87] [.86, .87]

— αw (25) .86 [.85, .87] [.85, .86] [.85, .87]
Note. Model specification is only relevant for ω but not for α. Est = Reliability estimate. MC = Monte Carlo.
CI = Confidence Interval. CrI = Credible Interval.
aWhen measuring individual constructs, it is recommended to report all three of ω2l, ωb, and ωw (or all three
of α2l, αb, and αw).
bSee the Appendix for an example of a shared construct.
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Figure 1. Path diagram depicting a multilevel factor model for an individual-level construct. This
is a modified re-creation of Figure 5 in Stapleton et al. (2016).
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Figure 2. Path diagram depicting a multilevel factor model for a shared construct. This is a
modified re-creation of Figure 4 in Stapleton et al. (2016).
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Figure 3. Path diagram depicting a multilevel factor model for a within-cluster construct. This is a
modified re-creation of Figure 3 in Stapleton et al. (2016).
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Appendix

Reliability of a Shared Construct (With the Potential Presence of a Configural Construct)

To illustrate the computation and issues for the reliability of a between-level composite measuring

a shared construct, I revisited the empirical example in (Stapleton & Johnson, 2019) based on the

TIMSS 2015 data (Mullis, Martin, Foy, & Hooper, 2016) on six student-level items that tapped

into the teacher-level shared construct Engaging Teaching. After listwise deletion, the data

contained 2,891 students from 240 classrooms. The six items asked whether students agreed with

the following statements (1-agree a lot to 4-disagree a lot):

1. The teacher clearly communicates the purpose of each mathematics lesson (MSBM18A).

2. I know what my teacher expects me to do (MSBM18B).

3. My teacher is easy to understand (MSBM18C).

4. My teacher links new content to what I already know (MSBM18H).

5. My teacher is good at explaining advanced mathematics (MSBM18I).

6. My teacher uses a variety of teaching methods, tasks, and activities to help us learn

(MSBM18M).

The ICCs of the items were between .10 to .21. Other parameter estimates can be found in

Stapleton and Johnson.

If one is only interested in the between-level shared construct, and would like to use the

between-level composite to measure it, one should use a saturated within-level model (Figure 2).

Using equation (20), the estimated ωb = .719, 95% Wald CI [.668, .771], which was very different

from ω̃b = .976 reported in Stapleton and Johnson (2019).

However, Stapleton and Johnson (2019) also hypothesized that there was an additional

individual-level construct, Acquiescence, as a source of common variance at the individual level

(see Figure A1). If Acquiescence had between-level variance (i.e., ICC > 0), then the common

variance at the between level would not be unidimensional. As explained in Stapleton and

Johnson, given that Engaging Teaching, denoted as ηs, and the between-level component of

Acquiescence, denoted as ηb, had the same set of indicators, their respective variances, φs and φb,
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were not estimable. One solution that Stapleton and Johnson proposed was to directly fix the ICC

of Acquiescence to a chosen value based on researchers’ knowledge.

Figure A1. Path diagram depicting a multilevel factor model for a simultaneous shared and in
individual-level construct. This is a modified re-creation of Figure 6 in Stapleton et al. (2016).

The fact that the between-level composite score might measure more than one construct

does not change the definition of the definition of reliability, at least in classical test theory,

because reliability is simply the consistency of the observed composite scores, even when the

those scores measure also something irrelevant to the target construct. In other words, ωb and αb

correctly measures the consistency of the between-level composite, but the composite itself may

measure some stable cluster-level characteristics (e.g., classroom-level aggregates of

Acquiescence) other than the target shared construct (e.g., Engaging Teaching). The presence of

an additional configural construct does have an impact on the validity of the observed

between-level composite scores, and in such a situation researchers may be more interested in the

proportion of observed variance attributable to the target shared construct. Let λs
k be the factor

loading of the kth item on the shared construct, then an index quantifying the proportion of
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variance attributable to the shared construct is

ω
b(s) =

(
∑p

k=1 λ
s
k)

2φs

(
∑p

k=1 λ
s
k)

2φs + (
∑p

k=1 λk)
2(φb + φw/ñ) + 1′Θb1 + 1′Θw1/ñ

, (A1)

where λk is the factor loading of the kth item on the individual construct (and is constant across

the configural and the within-level component). Note that ωb(s) is conceptually the same as what

Stapleton and Johnson (2019) referred to as construct reliability (see also Brunner & Süß, 2005).

Based on one of the scenario demonstrated in Stapleton and Johnson (2019) that assumed

an ICC of .05 for Acquiescence, ωb(s) was estimated to be .607, 95% Wald CI [.534, .679].

However, if the ICC of Acquiescence was assumed to be .10, ωb(s) would be .476, 95% Wald CI

[.378, .575], as less variance was due to the shared construct. Therefore, the reliability of the

between-level composite, ωb, is an upper bound for ωb(s). The R and Mplus codes for computing

ωb and ωb(s) for this example can be found in the supplemental material.
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