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Abstract

Although many methodologists and professional organizations have urged applied researchers to

compute and report effect size measures accompanying tests of statistical significance, discussions

on obtaining confidence interval (CI) for effect size with clustered/multilevel data have been

scarce. In this paper, I explore the bootstrap as a viable and accessible alternative for obtaining

CIs for multilevel standardized mean difference effect size for cluster-randomized trials. A

simulation was carried out to compare 17 analytic and bootstrap procedures for constructing CIs

for multilevel effect size, in terms of empirical coverage rates and width, for both normal and

nonnormal data. Results showed that, overall, the residual bootstrap with studentized CI had the

best coverage rates (94.75% on average), whereas the residual bootstrap with basic CI had better

coverage in small samples. These two procedures for constructing CIs showed better coverage

than using analytic methods for both normal and nonnormal data. In addition, I provide an

illustrative example showing how bootstrap CIs for multilevel effect size can be easily obtained

using the statistical software R and the R package bootmlm. I strongly encourage applied

researchers to report CIs to adequately convey the uncertainty of their effect size estimates.

Keywords: effect size, multilevel, cluster-randomized trial, bootstrap, standardized mean

difference, robustness, nonnormal data
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Bootstrap Confidence Intervals for Multilevel Standardized Effect Size

Although many methodologists have urged researchers to compute and report effect size

measures accompanying tests of statistical significance (e.g., Cohen, 1990; Cumming, 2014;

Kelley & Preacher, 2012; Thompson, 2007), discussions on interval estimates of effect size with

clustered and multilevel data have been scarce (e.g., Hedges, 2007; Snijders & Bosker, 1994),

despite recommendations from many professional organizations (AERA, 2006; APA, 2010;

Appelbaum et al., 2018) and authors (Hedges, 2008; Thompson, 2002). One plausible reason is

that the computational formulas for confidence intervals (CIs) for effect size with multilevel data

(Hedges, 2007) have not been implemented in standard statistical software packages for multilevel

modeling, and those formulas rely on asymptotic theories that may not hold for finite samples. In

addition, multilevel data comprise a collection of data structures with varying numbers of

clustering levels and relations between levels (i.e., nested vs. crossed), which makes it tedious to

derive complex formulas for CIs for multilevel research designs where analytic formulas for effect

size and the corresponding sampling variance have not been derived. Recognizing such

difficulties, in this manuscript I explore the bootstrap (Efron, 1982) as a general and robust

alternative for obtaining CIs for multilevel effect size.

The two most common types of effect size statistics are standardized mean difference (e.g.,

Cohen’s d) and proportion of variance accounted for (i.e., R2) effect sizes (Grissom & Kim, 2012;

Rosenthal, 1994). Given that this paper mainly focus on the former, I use the term “effect size” to

mean standardized mean difference, unless otherwise specified.

In the past two decades, effect size reporting has been the central theme in the “statistical

reform” in behavioral sciences (e.g., Kline, 2013; Thompson, 2002). Many professional

organizations, including the American Educational Association (AERA, 2006), the American

Psychological Association (APA, 2010), the International Committee of Medical Journal Editors

(Schulz, Altman, Moher, & CONSORT Group, 2010), and the National Center for Education

Statistics (NCES, 2012), have guidelines for reporting effect size. In addition to reporting point

estimates of effect size measures, many sources have also encouraged researchers to report CIs so
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that the uncertainty associated with a sample effect size can be adequately quantified (AERA,

2006; APA, 2010; Hedges, 2008; Thompson, 2002). For example, the APA publication manual

(APA, 2010) stated that “[w]henever possible, [researchers should] provide a confidence interval

for each effect size reported to indicate the precision of estimation of the effect size” (p. 34), a

requirement that was reiterated in its most recent Journal Article Reporting Standard (Appelbaum

et al., 2018). A similar statement the AERA (2006) reporting standards stated that “there should

be included . . . [a]n indication of the uncertainty of that index of effect (such as a standard error or

a confidence interval” (p. 37). Methodological scholars, such as Hedges (2008) and Thompson

(2002), have also made similar recommendations.

Whereas point estimates of effect size measures are regularly reported in single-level

studies, the CIs for effect size estimates are still rarely attached. Peng, Chen, Chiang, and Chiang

(2013) reviewed 32 review papers of effect size reporting practices in published articles from 116

journals in education and psychology, and noted that whereas the median effect size reporting

rates were 58.0% after 1999, few of the studies reported CIs, contrary to the APA and AERA

guidelines. In a review of articles in the Journal of Experimental Psychology: General, an APA

journal, Fritz, Morris, and Richler (2012) found that the reporting rate for CIs for effect size was

zero in 71 articles (see also Byrd, 2007, for a similar finding). This is in sharp contradiction to the

existing guidelines on effect size reporting.

Reporting CIs for effect size is important for two major reasons. First, the sample effect size

is only a point estimate, just like a sample mean, correlation, or regression coefficient. It can be a

noisy estimate of the population effect size, especially when the sample size is small, and the point

estimate itself does not convey the amount of uncertainty associated with it. An effect size of .80

with a 95% CI [.75, .85] is perceived very differently from an effect size of .80 but with a 95% CI

[.10, 1.50]. Second, CIs for effect size plays an increasingly important role in sample size

planning (or power analysis). Traditionally, effect size estimates in a pilot study or previous

research are commonly used for sample size calculations for subsequent studies. However, due to

publication bias, many of the published research tend to have an overestimated effect size (van



BOOTSTRAP MULTILEVEL EFFECT SIZE 5

Assen, van Aert, & Wicherts, 2015). Using an overestimated effect size for sample size planning

perpetuates the problems of underpowered studies and noisy estimates (Maxwell, 2004). To

counter that, Perugini, Gallucci, and Costantini (2014) suggested using the safeguard power

analysis, which requires the use of the lower limit of an 80% or 95% CI of effect size in a previous

study for sample size planning (see also Anderson & Maxwell, 2017, for alternative methods to

adjust the sample size estimate when planning for a replication study).

Although different researchers have proposed methods for obtaining CIs for effect size,

applied researchers may not be familiar with them or may find them difficult to use by hand. Even

for single-level studies, the analytic formulas for the sampling variance of effect size are not

simple, and some of these methods for obtaining CIs invoke noncentral distributions (Smithson,

2001), which is seldom part of the quantitative training for behavioral researchers. For the

simplest multilevel structure with two nested levels, the analytic expression of the sampling

variance of effect size already fills two lines of space (Hedges, 2007); for the more complicated

cross-classified structure the variance of effect size takes three full lines (Lai & Kwok, 2014).

Furthermore, these formulas or analytic methods tend to be restrictive, as they rely on large

sample approximations, assume normality of the error terms and the random effects, and cannot

handle extensions such as covariate adjustment and effect heterogeneity (i.e., random slopes).

On the other hand, computer intensive methods, such as the bootstrap (Efron & Tibshirani,

1993), require analytic formula of only the point but not the variance estimates of a parameter,

which greatly alleviates the technical burden on applied researchers. Some forms of the bootstrap,

as discussed later, also have the added advantage of automatically handling some violations of

assumptions, such as the assumption of normal errors and random effects, which makes them

attractive alternatives for obtaining CIs for effect size and other types of effect size statistics.

With the ultimate goal of encouraging researchers to report CIs for multilevel effect size in

mind, in the current study I aim to (a) introduce and review various analytic and bootstrap

methods to construct CIs for multilevel effect size; (b) compare the coverage, symmetry, and

width of these CIs using simulations for both normal and nonnormal data across a variety of
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design features, and provide evidence-based recommendations; and (c) illustrate how one can

obtain bootstrap CIs for multilevel effect size with the provided R code and the R package

bootmlm (Lai, 2019). Although the present study concerns mainly the use of the bootstrap for

effect size with two-level data, the method can easily be applied to other types of effect size

measures and to more complicated data structures. Also, the scope of the present study is limited

to the use of multilevel boostrapping to cross-sectional data, as longitudinal data usually requires

different ways of defining effect size and require more complex multilevel models (e.g.,

autocorrelations, random slopes) that can be addressed in a separate paper.

The Bootstrap

Efron (1982) has popularized the bootstrap method for obtaining standard errors (SEs) and

variances (i.e., SE2) of statistical estimators when closed form solutions are difficult or impossible

to obtain. One of the most familiar applications of the bootstrap in behavioral research is

mediation analysis (e.g., Preacher & Hayes, 2004). For mediation, the sampling distribution of an

indirect effect, which is a product of two path coefficient estimators, is generally skewed even

when multivariate normality holds, making the standard procedures of significance testing and CI

construction biased. MacKinnon, Lockwood, and Williams (2004) showed that the bias-corrected

bootstrap outperformed other methods in terms of power and confidence limit accuracy for

constructing CI for the indirect effect, but Hayes and Scharkow (2013) showed that it suffered

from inflated Type I error rates and suboptimal coverage especially with a small sample size.

Similarly, Kelley (2005) and Chen and Peng (2015) recommended the bootstrap for

estimating CIs for effect size with single-level data. Like indirect effects, even with normal data,

an effect size δ is obtained as a mean difference, which is normally distributed, divided by a

standard deviation, which is generally the square root of a scaled chi-squared variable, so the

sampling distribution of δ follows a noncentral t distribution, which is generally skewed (Hedges,

1981). The noncentral t distribution becomes only an approximation at best when the data are not

normal and when cluster sizes are not equal with multilevel data. With the bootstrap, researchers
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do not need to rely on asymptotic normality for multilevel effect size, which generally does not

hold for finite sample size, nor do they need to derive complex expressions for the corresponding

standard errors to construct CIs. Below I review the definition of effect size for a two-level

cluster-randomized trial below, and then introduce various methods for constructing CIs.

Multilevel Standardized Mean Difference Effect Size

In many randomized studies in behavioral and educational research, data are clustered and

the randomization happens at the upper level. Examples include students within schools (e.g.,

Jones, Brown, Hoglund, & Aber, 2010), participants in social groups (Bull, Levine, Black,

Schmiege, & Santelli, 2012), and nurses within hospitals (Bolier et al., 2014), wherein schools,

social groups, and hospitals are assigned to different intervention groups. A commonly used

multilevel model for data from a two-level cluster-randomized trial consists of a level-1 model,

yi j = β0 j + εi j, (1)

and a level-2 model,

β0 j = γ00 + γ01TREAT j + u0 j, (2)

where yi j is the outcome of the ith individual in the jth cluster, TREAT is coded as 1 = treatment

arm and 0 = control arm, β0 j is the cluster mean of the jth cluster, γ00 is the grand mean of the

control arm, and γ01 quantifies the average treatment effect. The level-1 and level-2 error terms,

εi j and u0 j , are assumed independent, with εi j ∼ N(0, σ2
W ) and u0 j ∼ N(0, σ2

B).

The coefficient γ01 represents the unstandardized effect size on the raw metric of y. For

many variables in social and behavioral sciences, however, the unit of y is not intrinsically

meaningful, and measurement of the same construct across different studies may not be

comparable (Blanton & Jaccard, 2006), so it is a common practice to compute effect size in

standard deviation unit (Cohen, 1988), resulting in standardized mean difference effect size.
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Under the above model, one way to define effect size is (Hedges, 2007, equation 3)

δT =
γ01√

σ2
W + σ

2
B

, (3)

where δT is on the unit of the total SD.1

Obtaining CIs for Effect Size With Two-Level Data

There are various methods to compute effect size and obtain a CI under the model in (1)

and (2). In this simulation study, I compared 17 procedures to construct CIs for multilevel effect

size, including two analytic methods and 15 bootstrap procedures.

Analytic Method

For the two analytic (i.e., non-bootstrap) methods, they require the computations of a point

(d) and a variance estimate (v) of effect size, after which one can obtain a symmetric

(1 − α) × 100% CI as

[d − z1−α/2
√
v, d + z1−α/2

√
v], (4)

where z1−α/2 denotes the 1 − α/2 quantile of the standard normal distribution.

Analysis of variance (ANOVA) method. The ANOVA method (Searle, Casella, &

McCulloch, 2006) uses the formula presented in Hedges (2007) to estimate the effect size, d = dT ,

and the corresponding sampling variance, v = V(dT ). When each cluster contains n observations,

meaning that the cluster size is constant, a sample estimator of δT is (Hedges, 2007, p. 349)

dT =

(
ȲT
.. − ȲC

..

ST

) √
1 −

2(n − 1)ρ
N − 2

, (5)
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with sampling variance

V(dT ) =

(
NT + NC

NT NC

)
[1 + (n − 1)ρ]

+ δ2
T

(
(N − 2)(1 − ρ)2 + n(N − 2n)ρ2 + 2(N − 2n)ρ(1 − ρ)

2[(N − 2) − 2(n − 1)ρ]2

)
, (6)

where NT and NC are the number of level-1 units and ȲT
.. and ȲC

.. are the grand means of the

outcome, respectively for the treatment and the control arms, ρ = σ2
B/(σ

2
W + σ

2
B) is the intraclass

correlation (ICC), and ST is the pooled total sample standard deviation defined as

ST =

√∑JT
j=1

∑n
i=1(Y

T
i j − ȲT

.. )
2 +

∑JC
j=1

∑n
i=1(Y

C
i j − ȲC

.. )
2

N − 2
,

with JT and JC being the number of clusters in the treatment and the control arm respectively. In

most situations, as δT is not known, one has to replace it with dT when computing V(dT ).

When cluster sizes are not constant, Hedges (2007) also derived a formula for dT and V(dT ).

However, the formula is quite complex and requires the information about the size of each cluster,

which usually happens only when researchers have the raw data. Nevertheless, when raw data are

available, the method based on linear mixed-effects model (LMM-based method), as described

next, is generally more efficient and simpler to use, and thus should be preferred.

LMM-based approach. Using the linear mixed-effects model, when model estimates of

γ01, σ2
W , and σ2

B (denoted as γ̂01, σ̂2
W , and σ̂2

B), and their sampling variances, are available, the

sample effect size can be estimated as (Hedges, 2009, equation 18.24)

δ̂T =
γ̂01√

σ̂2
W + σ̂

2
B

(7)

with variance

V(δ̂T ) =
V(γ̂01)

σ̂2
W + σ̂

2
B

+
γ̂2

01[V(σ̂
2
W ) + V(σ̂2

B)]

4(σ̂2
W + σ̂

2
B)

3
. (8)
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Note that, with maximum likelihood or restricted maximum likelihood estimation, V(γ̂01) is

simply the squared value of the SE of γ̂01, whereas V(σ̂2
B) and V(σ̂2

W ) need to be obtained from the

asymptotic variance-covariance matrix of the random effects, which are available in SAS (Littell,

2006) and SPSS (Norusis, 2012).2 For the lme4 package (Bates, Mächler, Bolker, & Walker,

2015) in R, which was used in the current study, they can be obtained with the vcov_vc()

function in the bootmlm package.

Bootstrap Methods

In the statistical and methodological literature, there are multiple bootstrap approaches even

for single-level analyses, mainly depending on whether and what parametric assumptions are

involved (Davison & Hinkley, 1997). Also, after a bootstrap sampling distribution of an estimate

(e.g., an effect size estimate) is formed, there are multiple procedures to construct CIs. With

multilevel data, additional care is needed to address the dependencies in the data when

resampling. Below I first summarize the common multilevel bootstrap procedures studied in the

current paper, and then discuss the various methods to obtain CIs. Readers interested in more

detailed discussions on the bootstrap should consult Davison and Hinkley (1997) for the

background statistical theory, and Goldstein (2011) and Van der Leeden, Meijer, and Busing

(2008) for in-depth review on multilevel bootstrapping methods.

Parametric bootstrap (PBoot). In the parametric bootstrap for multilevel data (Goldstein,

2011), one first fit the multilevel model described in (1) and (2) to obtain estimates of the fixed

and random effects, typically based on either maximum likelihood or restricted maximum

likelihood estimation. Then, for each bootstrap sample, a new set of level-1 errors, ε∗i j , is drawn

from independent N(0, σ̂2
W ) distributions, and a new set of level-2 random effects, u∗0 j , is drawn

from independent N(0, σ̂2
B) to form a new set of responses, y∗i j = γ̂00 + γ̂01TREAT j + u∗0 j + ε

∗
i j . The

multilevel model is then refitted to the new bootstrap data, and δ̂∗T is computed using equation (7).

To obtain the studentized CI (discussed later), V(δ̂∗T ) also needs to be estimated for each bootstrap

sample, for example using equation (8). The process is then repeated for R (e.g., R = 1, 999)
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bootstrap samples to obtain a bootstrap sampling distribution of δ̂∗T .

Residual bootstrap (RBoot). I followed the approach proposed in Carpenter, Goldstein,

and Rasbash (2003) and Goldstein (2011) to implement the residual bootstrap for multilevel data.

The residual bootstrap is similar to the parametric bootstrap, but instead of simulating new errors

from the corresponding normal distributions, in residual bootstrap one obtains new errors by

sampling with replacement the residuals based on a fitted model. In multilevel residual bootstrap,

one first obtains the level-2 and level-1 residuals, ũ0 j and ε̃i j , from a fitted model. However,

because the sampling variance of ũ0 j is smaller than σ̂2
B, and similarly but to a lesser degree for ε̃i j

and σ̂2
W , one needs to first reflate the raw residuals so that their sample variances match the

estimated variance components. To reflate ũ0 j , one first computes its empirical variance,

S2
ũ =

∑J
j=1 ũ2

0 j/J, where J is the number of clusters, and then obtain the reflated level-2 residuals

as
√
σ̂2

B/S
2
ũ ũ0 j . The same procedure is applied to obtain the reflated level-1 residuals. Then, for

each bootstrap sample, new sets of level-2 and level-1 residuals, u∗0 j and ε
∗
i j , are sampled with

replacement from the reflated level-2 and level-1 residuals. After that, as in parametric bootstrap,

a new set of responses y∗i j is computed and δ̂∗T is computed, and the process is repeated R times to

obtain a bootstrap sampling distribution of δ̂∗T .
3 Vallejo Seco, Ato García, Fernández García, and

Livacic Rojas (2013) showed that the residual bootstrap method produced more precise estimates,

in terms of a smaller root mean squared error, for fixed effects than restricted maximum likelihood.

Case bootstrap (CBoot). In single-level analyses, with the case bootstrap the

observations (as opposed to the residuals) are resampled with replacement (Davison & Hinkley,

1997). The case bootstrap assumes that each observation is independent, which is clearly violated

with multilevel data (Goldstein, 2011; Hox, 2010; Roberts & Fan, 2004; Van der Leeden et al.,

2008). While there are multiple proposals to adapt the case bootstrap for multilevel data (Roberts

& Fan, 2004; Van der Leeden et al., 2008), the major ones are (a) to resample with replacement

the level-2 clusters, and keep the level-1 units in a cluster intact, and (b) to resample first the

clusters, and within each cluster resample the level-1 units. Both schemes result in bootstrap

samples with level-1 sample size different from the original size when the cluster sizes are not
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equal. For simplicity, only scheme (a), which was recommended over scheme (b) by both Davison

and Hinkley (1997) and Goldstein (2011), is included in the simulation study for comparison. It

should be noted that because the case bootstrap makes fewer assumptions than the parametric and

the residual bootstraps, it requires more information from the data. Not surprisingly, previous

literature found that its performance was poor compared to the other two methods, even when the

assumptions made in the parametric bootstrap and for the residual bootstrap were violated (Efron

& Tibshirani, 1993; Van der Leeden et al., 2008). The exception is for designs where each cluster

has the same number of observations, as Thai, Mentré, Holford, Veyrat-Follet, and Comets (2013)

found that in longitudinal linear-mixed models where cluster size is constant, residual bootstrap

and case bootstrap performed similarly when there were at least 100 individuals (i.e., J = 100).

Bootstrap confidence interval. There are numerous ways to construct CIs after obtaining

a bootstrap sampling distribution (Davison & Hinkley, 1997; Efron & Tibshirani, 1993; Van der

Leeden et al., 2008; Wu, 1986). For this study I focus on the five common procedures discussed in

Davison and Hinkley (1997), which are available in the boot package (Canty & Ripley, 2017) in R

(R Core Team, 2019). The five procedures for obtaining bootstrap CIs are briefly reviewed below.

Normal approximation (norm). With normal approximation, one simply replaces v from

equation (4), the analytic estimation of the sampling variance of δ̂T , with the bootstrap estimate

v∗ =
∑R

r=1(δ̂
∗(r)
T −

¯̂
δ∗T )

2/(R − 1) to obtain an approximate (1 − α) × 100% symmetric CI as

[
δ̂T − z1−α/2

√
v∗, δ̂T + z1−α/2

√
v∗

]
. (9)

Basic CI (basic). The basic CI (Davison & Hinkley, 1997), sometimes referred to as the

percentile-t CI or the Hall’s percentile CI (Van der Leeden et al., 2008), uses the bootstrap

distribution of the bias, δ̂∗T − δ̂T to obtain a CI defined as

[
2δ̂T − δ̂

∗
T,1−α/2, 2δ̂T − δ̂

∗
T,α/2

]
, (10)
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where δ̂∗T,α/2 and δ̂
∗
T,1−α/2 are the α and 1 − α/2 quantiles of the bootstrap distribution. Note that

the bootstrap estimate of bias, ¯̂
δ∗T − δ̂T , can also be used to correct for the bias in δ̂T ; for the

current study, however, δ̂T is found to be approximately unbiased and so I focus mainly on the

bootstrap CIs.

Studentized CI (stud). The studentized CI (Davison & Hinkley, 1997), also called the

bootstrap-t CI, is a second-order accurate CI by using z∗ = δ̂T−δT√
V(δ̂∗T )

as a pivot, where V(δ̂∗T ) is the

approximate variance of δ̂∗T based on a bootstrap sample. This means that for each bootstrap

sample one needs both the point and variance estimates of δ̂T . The studentized CI is generally

more accurate when the SE of an estimator depends on the estimated value, which is the case for

δ̂T based on equations (7) and (8) for multilevel effect size. The studentized CI can be obtained as:

[
δ̂T − z∗1−α/2

√
V(δ̂∗T ), z

∗
1−α/2δ̂T +

√
V(δ̂∗T )

]
. (11)

Percentile CI (perc). The percentile CI (Efron, 1982) is a simple method to construct a

(1 − α) CI from a bootstrap distribution by taking the 100α/2th and the 100(1 − α/2)th percentiles

of the distribution (e.g., the 2.5th and the 97.5th percentiles for a 95% CI). It is denoted as

[δ̂∗T,α/2, δ̂
∗
T,1−α/2]. (12)

The percentile CI has the advantage of being easy to compute and understand. It also does not

make any distributional assumption on the estimator, so the two confidence limits need not be

symmetric. However, Davison and Hinkley (1997) and Van der Leeden et al. (2008) both

commented that the percentile CI tends to produce biased confidence limits, especially when

using the case bootstrap, and especially when the original estimator is biased or when the original

sample size is small (Efron & Tibshirani, 1993).

Bias-corrected and accelerated (BCa) CI. One can improve the performance of the

percentile CI with the (BCa) method (Efron, 1987). Like the percentile CI, the BCa CI is

constructed by taking two quantile values in the bootstrap sampling distribution. However, instead



BOOTSTRAP MULTILEVEL EFFECT SIZE 14

of using the α/2 and the 1 − α/2 quantiles, one uses the αL and αU quantiles defined as (Efron &

Tibshirani, 1993, p. 185)

αL = Φ

(
w +

w + zα/2
1 − a(w + zα/2)

)
αU = Φ

(
w +

w + z1−α/2

1 − a(w + z1−α/2)

)
,

where Φ(·) is the cumulative density function (cdf) for the standard normal distribution. The two

correcting factors are w and a, with w correcting for median bias and a correcting for the

skewness (acceleration) of the distribution of the estimator, and can be estimated as

w = Φ−1 ©­«
∑R

r=1 I
{δ̂
∗(r)
T <δ̂T }

R + 1
ª®¬

a =

∑J
j=1 l3

j

6(
∑J

j=1 l2
j )

3/2
,

with Φ−1(.) being the quantile function (or the inverse cdf) of the standard normal distribution and

l j being the influence values (Davison & Hinkley, 1997) of the estimator and can be estimated

using the grouped jackknife (Van der Leeden et al., 2008).4 The indicator function, I
{δ̂
∗(r)
T <δ̂T }

,

equals 1 when δ̂∗T < δ̂T for the rth bootstrap sample and equals 0 otherwise. When the estimator is

unbiased, w = 0; when the influence function is symmetric, a = 0. Therefore, for an unbiased

estimator with a symmetric sampling distribution, αL = α/2 and αU = 1 − α/2, and the BCa CI is

equivalent to the percentile CI. Like the studentized CI, the BCa CI is second-order accurate.

Simulation Study

The simulation study compares the performances of various procedures of constructing CIs

for δT estimates.

Design Factors

There were seven design factors in the simulation study, as described below.
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Intraclass correlation (ICC). The three ICC levels were chosen to reflect the common

values in cross-sectional psychological and educational research based on a review of articles

involving clustered data in American Educational Research Journal and Child Development (see

also Hedges & Hedberg, 2007): .05, .10, and .20, to see how the methods for constructing CIs

perform. The levels also match the range used in Flynn and Peters (2004). As found in Vallejo

Seco et al. (2013), the performance of the residual bootstrap got worse with increasing ICC.

Distribution of u0 (P[u0]). Because one of the goal of the present study is to recommend

procedures for constructing CIs when the normality assumption is violated, the level-2 random

effects, u0, followed either a normal distribution or a scaled skew-t distribution with four degrees

of freedom and a slant parameter of 10. The slant parameter regulates the skewness of the

variable, with slant = 0 resulting in a symmetric variable and larger values of slant giving more

positive skewness.5 For conditions with nonnormal u0, a skewed-t variable was first simulated

using the sn package in R (Azzalini, 2019), from which the theoretical expected value was

subtracted to have a mean zero, and then rescaled so that the variance matched the desired σ2
B

value. The average sample skewness of the simulated u0 values was 1.59 and the average sample

kurtosis was 3.47. For all conditions, σ2
W = 1.0, and so σ2

B = ICC/(1 − ICC).

Distribution of ε (P[ε]). Similar to P(u0), the distribution of level-1 errors, ε, was either

normal or scaled skewed-t, with variance σ2
W = 1. The same scaled skewed-t distribution and

procedure to generate nonnormal u0 was used to simulate nonnormal ε. The average sample

skewness of the simulated u0 values was 2.64 and the average sample kurtosis was 15.19. The

inclusion of conditions with normal P(u0) and nonnormal P(ε), and normal P(ε) and nonnormal

P(u0), allows examination of the relative impact of nonnormality at level 1 and at level 2.

Population effect size (δT ). The simulation included δT = 0 for the null treatment effect

condition and δT = 0.5 for the non-null treatment effect condition. An effect size of 0.5 was close

to the recommended minimum effect size suggested by Ferguson (2009) and the minimally

clinically important value suggested by Angst, Aeschlimann, and Angst (2017), and was similar to

the values used in previous simulation studies (e.g., Feingold, 2015). Based on previous
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simulation results (e.g., Feingold, 2015; Kelley, 2005), δT was not expected to to have a big

impact on the performance of the various procedures for constructing CIs.

Number of clusters (J). It is generally agreed that multilevel models require at least 30

clusters (e.g., Hox, 2010). In this study, J was set to either 20, 30, or 70 based on the literature

review, and there was an equal number of clusters in the treatment and the control arms (i.e.,

JT = JC). The level with 20 clusters matched the most extreme condition in the simulation by

Carpenter et al. (2003).

Average cluster size (n̄). There were two levels for n̄: 5 for small and 25 for medium. The

small value was consistent with the small cluster size conditions in previous simulation studies

(e.g., Maas & Hox, 2005; Thai et al., 2013), whereas the medium value was chosen to represent

typical classroom size in the United States.

Imbalance of cluster sizes. Among the five methods for estimating δT , only the ANOVA

method assumes equal cluster sizes. However, Ames (2013) showed that the LMM-based

estimates of effect size can also be biased with unequal cluster sizes. Unequal cluster sizes also

reduce the effective sample size (Candel & Breukelen, 2009), which may make both the analytic

methods and the bootstrap methods less stable. The simulation thus included both balanced and

unbalanced data conditions. For the unbalanced conditions, the J clusters were divided into five

strata, each with J/5 clusters, and the cluster sizes were n̄/5, 3n̄/5, n̄, 7n̄/5, 9n̄/5, respectively, so

that the ratio of the largest to the smallest cluster sizes was 9 to 1. For example, when J = 30 and

n̄ = 5, for the unbalanced cluster size condition there were six clusters with only one observation,

six clusters with three observations, six with five observations, six with seven observations, and

the remaining six with nine observations.

Data Generation and Analyses

Computation for the work described in this paper was supported by the University of

Southern California’s Center for High-Performance Computing (hpcc.usc.edu). In this study there

were a total of 3 (ICC) × 2 (P[u0]) × 2 (P[ε]) × 2 (δT ) × 3 (J) × 2 (n̄) × 2 (imbalance of n) = 288
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conditions. For each of the 288 condition, there were 1,000 replication data sets, and in each of

which J values of u0 and N values of ε were generated independently in R (R Core Team, 2019)

according to the predefined distribution (i.e., normal or nonnormal) for each condition. As

previously explained, for skewed u0 and ε, the rst() function in the sn package was used to

simulate nonnormal data, and they were transformed to have a population mean of zero and a

population variance of desired value. For normal u0 and ε, the rnorm() function in R was used.

Then the outcome (y) values were computed based on the model described in equation (1). For

each data set, I first obtained dT and V(dT ) based on the ANOVA method, and LMM-based δ̂T and

V(δ̂T ), in order to compute the analytic 95% CIs. Based on the LMM-based result of each data

set, I used the R package bootmlm to run the parametric, residual, and case bootstrap, each with

1,999 bootstrap samples. For each type of bootstrap methods, I then obtained five 95% CIs (norm,

basic, stud, perc, and BCa). Therefore, for each data set there were 17 CIs to be compared (e.g.,

RBoot-stud for the residual bootstrap with studentized CI, and PBoot-basic for the paramteric

bootstrap with normal approximation CI). All multilevel model fitting were performed using the

lmer() function in the R package lme4 (Bates et al., 2015). All 17 CIs were successfully

computed for all replications across all simulation conditions, although in some replications with

small sample sizes, σ̂2
B were estimated to be zero, in which case V(σ̂2

W ) was used to substitue

V(σ̂2
W ) + V(σ̂2

B) in equation (8).

Evaluation Criteria

Across simulation conditions, the point estimates of ES based on both the ANOVA and

LMM-based methods were approximately unbiased, with biases between -0.018 and 0.039 across

simulation conditions. The following outcomes were obtained regarding the performance of the

95% CIs.

Coverage of 95% CI. If the methods for constructing CI are valid, then it is expected that

in 950 out of the 1,000 replications the CIs constructed would include δT , with a standard error of√
.95 × .05/1, 000 ≈ 0.69%. Let δ̂T,L and δ̂T,U be the lower and upper limits of a sample 95% CI
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for δT . The empirical coverage percentage was calculated as∑R
r=1 I

{δT ∈[δ̂
(r)
T,L,δ̂

(r)
T,U ]}

R
× 100%

The closer this percentage is to 95% the better a CI construction procedure performs.

Lower- and upper-tail error rates. In addition to maintaining a close to 95% coverage

rate, it is generally preferable for a CI construction procedure to not systematically be above or

below the parameter. Thus, I also examined the upper- and lower-tail error rates as

Error rateup =

∑R
r=1 I

{δT>δ̂
(r)
T,U }

R

Error ratelo =

∑R
r=1 I

{δT<δ̂
(r)
T,L}

R

For any two procedures of constructing 95% CIs with 95% coverage rates, the one with 2.5% error

rates for both upper and lower tails would be better than one that is consistently below (or above)

the population parameter with a 5% upper-tail (or lower-tail) error rate.

To better interpret the symmetry of the intervals, I also computed a shape index as

Shape =
Error rateup − Error ratelo
Error rateup + Error ratelo

, (13)

where shape > 0 indicates that the CI has a larger error rate on the upper tail.

Width of 95% CI. The width of a confidence interval was defined as δ̂T,U − δ̂T,L . If two

CIs have similar empirical coverage percentages but with different widths, the one with a shorter

average length should be preferred as it is more precise. Because the CI width was highly

dependent on design factors such as J, n̄, and ICC, for each condition I also obtained the relative

CI width of the bootstrap CIs as the width ratio of the bootstrap CI to the LMM-based CI, with

values larger than 1 indicating that the width of the bootstrap CI is longer.

Although a total of 17 procedures for constructing CIs were studied, the CIs based on the
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ANOVA method and the case bootstrap showed suboptimal performance (see Table 1), which was

consistent with previous literature. Therefore, the Result section only focuses on the comparison

of the remaining 11 procedures, namely the LMM-based (linear-mixed-effects-model-based)

approach and the parametric and the residual bootstrap procedures, and the full results can be

obtained from the author.

To summarize the influence of the seven between-condition design factors (ICC, P[u0], P[ε],

δT , J, n̄, imbalance), as well as two within-condition factors (i.e., method: LMM-based, RBoot,

etc and CI type: basic, stud, BCa, etc), I conducted a split-plot ANOVA for each evaluation

criterion. Because coverage rates and left-tail and right-tail error rates are intrinsically bounded

between 0 and 1, I used a logit transformation, logit(x) = log[x/(1− x)], for these measures before

running the ANOVAs. For each ANOVA, I included all main, two-way, and three-way interaction

effects and computed the η2 effect size for each effect (i.e., the sum of squares of each effect

divided by the total [within- and between-condition] sum of squares), as preliminary analyses

showed that none of the 4-way or higher-order interaction effects yielded η2 larger than 0.5%.

Table 1 should appear here

Results

Coverage

For coverage, the design factors with the highest η2 were CI type (η2 = 29.2%), method (η2

= 12.9%), method × P(ε) interaction (η2 = 12.2%), CI type × n̄ interaction (η2 = 11.3%), and CI

type × J interaction (η2 = 4.45%). The η2 values for terms involving ICC (< 3%), δT (< 1.7%),

P(u0) (< 1.3%), and imbalance (< 0.5%) were small. As shown in Table 1, among the 11

procedures for constructing CIs, residual bootstrap with studentized CI (RBoot-stud) gave the best

coverage (Mcoverage = 94.8%, SD = 0.82%), followed by RBoot with basic CI (RBoot-basic;

94.5%, SD = 0.92%), parametric bootstrap with stud CI (PBoot-stud; 94.4%, SD = 1.02%), and

RBoot with normal approximation CI (RBoot-norm; 94.3%, SD = 0.89%). The performance of

RBoot-stud, RBoot-basic, RBoot-norm, and PBoot-stud were also better than other procedures
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and had similar coverage for conditions with nonnormal P(ε) and/or nonnormal P(u). On the

other hand, the LMM-based analytic CI was suboptimal with nonnormal P(ε) and/or nonnormal

P(u) (Mcoverage = 93.7%), as elaborated more below.

Figure 1 should appear here

Normal data. Figure 1 shows the coverage percentages with normal P(u0) and normal

P(ε). Overall, the LMM-based CI showed undercoverage (Mcoverage = 93.8%), but improved with

large n̄ and J. Even when both u0 and ε were normally distributed, due to the non-normality of the

sampling distribution of δ̂T , many of the bootstrap CIs still had better coverage percentages than

LMM-based CI, especially with small J and large n̄. For example, when J = 20 and n̄ = 25, the

average coverage percentage for LMM-based CI was 92.8%, while RBoot-stud and PBoot-stud

CIs had average coverage percentages of 94.8% to 94.9%. On the other hand, when J = 70 and n̄ =

5, LMM-based CI was similar to PBoot-stud (94.3% vs. 94.7%) and was close to optimal.

Furthermore, although in most situations PBoot-stud and RBoot-stud had the best coverage

percentages, for conditions with n̄ = 5, PBoot-basic and RBoot-basic (94.4% average) were

slightly better than PBoot-stud and RBoot-stud (94.3% average), especially when J was also small

(94.3% to 94.4% vs. 94.0%). Therefore, in conditions with small cluster sizes, a simpler

procedure like the basic CI tends to perform better.

Figure 2 should appear here

Nonnormality at level 1. Figure 2 shows the coverage percentages with nonnormal P(ε)

and normal P(u0). Most CI construction procedures that assume normality showed worse

coverage, such as LMM-based CI (Mcoverage = 93.0%, SD = 1.1%) and PBoot CIs (Mcoverage =

93.0% to 93.9%). On the other hand, as expected the coverage percentages for most RBoot CIs

were not affected by nonnormal P(ε); specifically, RBoot-stud (94.6%) and RBoot-basic (94.5%)

had the highest average coverage percentages.

Figure 3 should appear here
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Nonnormality at level 2. Figure 3 shows the coverage percentages with normal P(ε) and

nonnormal P(u0). The pattern in general was similar to that with normal P(ε) and normal P(u0),

indicating that level-2 nonnormality had less impact on coverage rates than level-1 nonnormality.

The LMM-based CI showed reasonable coverage (Mcoverage = 94.4%). Overall, PBoot-stud

(Mcoverage = 94.9%) and RBoot-stud (Mcoverage = 94.9%) performed the best.

Figure 4 should appear here

Nonnormality at level 1 and level 2. Figure 4 shows the coverage percentages with

nonnormal P(ε) and nonnormal P(u0). With nonnormality at both levels, three RBoot CIs showed

the best average coverage percentages: 95.1% for RBoot-stud, 95.0% for RBoot-basic, and 94.8%

for RBoot-norm. All other procedures had average coverage percentages of 94.3% or lower. As

also shown in the figure, there were more variability in the coverage rates across conditions, and

additional analyses revealed that, for conditions with nonnormal P(ε) and nonnormal P(u0), the

population effect size δT explained a substantial proportion of variance (η2 = 10.3%). Specifically,

for all 11 procedures, the average coverage percentages were lower for δT = 0.5 than δT = 0 by 1.0

(RB-perc) to 2.1 (PBoot-BCa) percentage points. Despite the difference, RBoot-stud (Mcoverage =

95.7% and 94.4%), RBoot-basic (Mcoverage = 95.6% and 94.3%), and RBoot-norm (Mcoverage =

95.4% and 94.2%) were still the best procedures for both δT = 0 and δT = 0.5.

Lower- and Upper-Tail Error Rates

Table 1 shows the average lower and upper-tail error rates (in percentages) of the 11

procedures for constructing CI for δT . As expected, the error rate was higher on the upper tail than

the lower tail, especially with a larger δT (Mshape = .08 for δT = 0.50 and .06 for δT = 0), because

when the normality assumptions hold, the sampling distribution of δ̂T has heavier density on the

upper tail with increasing δT (Hedges, 2007).

Given that balanced error rates are not as important when the coverage rate is suboptimal, I

only focused on the error rates of the three best methods in terms of coverage: RBoot-stud

(studentized CI with residual bootstrap), RBoot-basic (basic CI with residual bootstrap), and
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PBoot-stud (studentized CI with parametric bootstrap). The mean lower-tail error rates were

2.62%, 2.77%, and 2.66%, respectively, whereas the upper-tail error rates were 2.63% (shape =

.003), 2.69% (shape = −0.01), and 2.93% (shape = 0.04). Therefore, the error rates were relatively

balanced for RBoot-stud, RBoot-basic, but not for PBoot-stud.

Width of 95% CI

An ANOVA analysis on the relative CI widths (i.e., the ratio to the width of LMM-based CI)

showed that the terms with highest η2 were CI type (η2 = 22.22%), CI type × n̄ (η2 = 9.21%),

methods × P(ε) interaction (η2 = 9.06%), methods (η2 = 8.24%), P(ε) (η2 = 8.08%), and J (η2 =

5.98%). Comparing the width of the 11 procedures, on average the bootstrap CIs had slightly

longer width than that of LMM-based CI (MRel CI width between 1.01 and 1.04), which partly

explained the undercoverage of the LMM-based CI in some simulation conditions. The

studentized procedures (MRel CI width = 1.03 for PBoot-stud and 1.04 for RBoot-stud) generally

yielded the longest intervals, followed by the BCa procedures (MRel CI width = 1.02 and 1.03).

Figure 5 should appear here

Figure 5 showed the distributions of the width of the 95% CI of the 10 bootstrap procedures

relative to that of the LMM-based CI across conditions of J, n̄, and normality of the level-1 error

term (P[ε]). Here I only focus on methods that generally show good coverage across conditions,

namely RBoot-stud, RBoot-basic, PBoot-stud, and PBoot-basic. For conditions with normal P(ε)

and smaller sample sizes, studentized CIs had worse coverage and longer intervals than basic CIs

when n̄ = 5 and J = 20 or 30. For example, when J = 20, PBoot-basic had an average coverage

percentage of 94.4% and an average CI width of 0.98, compared to 94.0% and 1.00 for

PBoot-stud. The coverage and width of the studentized and the basic CIs were similar when n̄ = 5

and J = 70 (difference in average width = .004). When n̄ = 25, PBoot-basic and RBoot-basic had

suboptimal coverage (Mwidth = 93.6%), so PBoot-stud and RBoot-stud should be preferred even

with wider intervals. For conditions with nonnormal P(ε) or P(u0), PBoot CIs generally had

suboptimal coverage, and among RBoot CIs, RBoot-stud had similar coverage and width as



BOOTSTRAP MULTILEVEL EFFECT SIZE 23

RBoot-basic when n̄ = 5 (Mcoverage = 94.9% vs. 95.2%; Mwidth = 0.78 for both), but better

coverage percentages when n̄ = 25 (Mcoverage = 95.0% vs. 94.3%).

Overall, when sample size was large (i.e., n̄ ≥ 25 or J ≥ 70), RBoot-stud had good coverage

and was robust to nonnormality. With small sample size but with violations of normality,

RBoot-stud was still on par with RBoot-basic. When sample size was small (e.g., n̄ = 5 and J ≤

30) and normality assumption was met, PBoot-basic and RBoot-basic should be preferred.

Illustrative Example

To illustrate the use of the bootstrap methods to obtain CIs for effect size for

cluster-randomized trials, I used a simulated data set based on the results and parameter estimates

in Haug et al. (2017). Both the simulated data and the R script are included in the supplemental

material so that readers can reproduce the results. In the original study, 1,041 students from 80

schools (NT = 547, JT = 43) in Switzerland were randomly assigned, at the school level, to either

receive a web- and text messaging-based intervention aiming to reduce problem drinking or an

assessment-only control. The intervention lasted 3 months and provided normative feedback on

alcohol consumption to participants, such as heavy drinking occasions and maximum number of

drinks per week based on a prior study. One of the outcome variable at 6-month follow up was the

estimated peak blood alcohol concentration (BAC). Whereas Haug et al. did not report the

skewness and kurtosis of this variable, other studies have indicated that the distribution of blood

alcohol concentration is usually positively skewed (e.g., White, Mun, & Morgan, 2008), so I

simulated the random effects and level-1 errors to be nonnormal, similar to the ones in the

simulation study, with sample skewness and kurtosis of 2.07 and 4.82.

To obtain effect size and 95% CI estimates, I first fitted a multilevel model with lme4 on the

simulated data, including a fixed effect for intervention and a random intercept for school, the

same model as in (1) and (2). The parameter estimates were: γ̂00 (i.e., mean estimated peak BAC

of the control arm) = 1.05, SE = 0.06; γ̂10 (i.e., difference in estimated peak BAC between

intervention and control) = -0.09, SE = 0.09; σ̂2
W (i.e., within-school variance of estimated peak
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BAC) = 0.81; and σ̂2
B (i.e., between-school variance of estimated peak BAC) = 0.08. The ICC was

estimated to be 0.094. The estimates were similar to those reported in Haug et al. (2017).

Using the R scripts in the supplemental material, the LMM-based

(linear-mixed-effects-model-based) effect size estimate was δ̂T = -0.092, indicating an

intervention effect of roughly 0.1 SD in reducing estimated peak BAC. Based on the simulation

results in this paper for nonnormal data, RBoot-stud and RBoot-basic CIs (i.e., residual bootstrap

with studentized and basic CIs) are recommended; with the simulated data, 95% RBoot CIs can

be obtained using the ComputeES() function provided in the supplemental material, with the

following input

ComputeES(dat, "y", "treat", "gp_id", type = "model",
boot = "residual", ci = "all",
nsim = 1999L)

which took a few minutes to run and returned all five types of CIs:

d d_boot normal.ll normal.ul basic.ll basic.ul
-0.092 -0.092 -0.278 0.095 -0.274 0.097

student.ll student.ul percent.ll percent.ul bca.ll bca.ul
-0.281 0.097 -0.281 0.089 -0.263 0.119

so the RBoot-basic CI was [−0.274, 0.097], and the RBoot-stud CI was similar but with a slightly

wider interval [−0.281, 0.097]. The CIs provided information on the uncertainty of the

intervention effect size estimate: it could be as low as a reduction by 0.3 SD or a small increase by

0.1 SD.

It is also instructive to compare the bootstrap intervals to one that ignored the uncertainty

due to clustering, the latter being the one reported in Haug et al. (2017). Using the simulated data

but ignoring the clustering, the Cohen’s d was estimated as 0.086, which was similar to the δ̂T

estimate that accounted for clustering; however, the 95% CI was found to be [-0.036, 0.207]

(width = 0.243) when the clustering was ignored, which was substantially narrower than the ones I

obtained using RBoot-basic (width = 0.371) and RBoot-stud (width = 0.378), even when the ICC

and cluster sizes of the data was relatively small (ICC = .094; n̄ = 13). Therefore, it is important

for applied researchers to report valid CIs that accurately account for the data dependency due to



BOOTSTRAP MULTILEVEL EFFECT SIZE 25

clustering. It should also be pointed out that the ANOVA-based and LMM-based procedures for

obtaining CIs had not been discussed until Hedges (2007) and Hedges (2009), so it is likely that

CIs for multilevel effect sizes reported in earlier literature were too narrow.

Discussion

Despite recommendations from methodologists and professional organizations (e.g., AERA,

2006; APA, 2010; Hedges, 2008), very rarely do researchers in the behavioral sciences report CIs

for effect size in single level studies, and little attention has been given to assist substantive

researchers in computing CIs for multilevel effect size. The present study compares the

performance of the bootstrap methods to the analytic methods in obtaining CIs, and results

supported various bootstrap procedures, especially the residual bootstrap, as viable alternatives

when analytic methods are not available, which makes CIs for multilevel effect size more

accessible to substantive researchers in interpreting research findings.

In addition, although some of the bootstrap techniques in this paper have been implemented

in previous software packages and macros,6 to my knowledge no previous package has

implemented all the bootstrap methods discussed in this paper; specifically, the studentized CIs,

which were shown to perform better than the other CIs for multilevel effect size, had not been

implemented. Therefore, the implementations of the various bootstrap methods and CI

construction procedures will be useful for researchers to obtain standard error and interval

estimates for not just multilevel effect size, but also other derived quantities such as R2, intraclass

correlation, and indirect effect, as well as to examine the robustness of the point and interval

estimates of model parameters in the presence of assumption violations.

Performances of the Analytic and Bootstrap Methods to Construct CI

The results from the current study are mostly in line with the expectations. The

ANOVA-based method is considered model-free in the sense that it does not require fitting a

multilevel model to the data first, so it is the only procedure among the ones tested in this paper

that can be used for secondary data analyses when only summary statistics, but not the raw data,
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are available. However, its coverage was suboptimal for conditions with unbalanced data (91.6%

on average) and when the normality assumption at level 1 was violated (92.0% on average). The

LMM-based (linear-mixed-effects-model-based) method, on the other hand, does not require

balanced data and gave 95% CIs with reasonable coverage for multilevel effect size.

However, when raw data are available, several bootstrap CIs had better coverage properties

than the LMM-based procedure. Specifically, even when the normality assumptions hold, the

studentized and basic CIs with parametric and residual bootstraps generally outperformed the

LMM-based method. This is likely because the bootstrap methods accommodate the nonnormal

sampling distribution of δ̂T . When the normality assumptions do not hold, residual bootstrap CIs

generally had the best coverage properties.

It was also found that methods that assumed normality (i.e., ANOVA-based, LMM-based,

and parametric bootstrap) were more affected by nonnormality at level 1 than at level 2. It is

possibly due to the higher sample skewness and kurtosis of the simulated data at level 1 than at

level 2, even though the level-1 errors and the level-2 random effects were drawn from the same

skewed-t distribution. As a post hoc analysis, I resimulated the data from the condition with

nonnormal P(ε) and normal P(u0), J = 30, n̄ = 25, δT = 0, ICC = 0.1, and balanced data, but

reduced the sample skewness and kurtosis of ε (to 1.33 and 2.69 on average across replications) to

match the sample skewness (average = 1.50) and kurtosis (average = 2.72) of u0 for the

counterpart condition with normal P(ε) and nonnormal P(u0). If the impact of nonnormality on

the coverage of the ANOVA-based, LMM-based, and parametric bootstrap CIs is merely a

function of the degree of nonnormality but not the level, I should expect similar coverage

percentages for these two conditions with matching skewness and kurtosis. I found that, however,

level-1 nonnormality still had a bigger impact than level-2 non-normality, as the coverage rates in

the former condition were 94.9%, 94.9%, and 95.8% for ANOVA-based, LMM-based, and

PBoot-stud, but were 93.6%, 93.6%, and 94.7% in the latter condition. Therefore, I do not

recommend ANOVA-based and LMM-based CIs for multilevel effect size especially when the

level-1 error term is not normal, but future studies can further compare the effect of level-1 and
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level-2 nonnormality in multilevel modeling.

Finally, CIs based on the case bootstrap, while not requiring parametric assumptions,

generally had coverage less than nominal level (around 93.7% across conditions) and performed

worse than the residual bootstrap. This is consistent with the finding in Huang (2018) that the case

bootstrap showed underestimated standard errors of the fixed effects especially when number of

clusters was small (e.g., by 6.1% to 8.5% with 20 clusters). Even for conditions with J = 70 and n̄

= 25, the performance of CIs based on the case bootstrap were generally similar to that of the

LMM-based CI. Therefore, I recommend the LMM-based CI and the CIs based on the residual

bootstrap for multilevel effect size over those based on the case bootstrap.

Comparisons of the Five Bootstrap CIs

Among the five types of bootstrap CIs, the studentized and the basic CIs performed best.

Given that the studentized CI was proposed as an improved procedure over simpler bootstrap

intervals such as normal CIs and basic CIs, its better performance is not surprising. The basic CI,

on the other hand, is the best option for smaller sample sizes such as with n̄ = 5 and J = 20, where

point and variance estimates of δ̂T may be noisy so that a simpler procedure is better.

On the contrary, the percentile and the BCa CIs generally had the worst coverage for

multilevel effect size. Also, the improvement of BCa CI over percentile CI was minimal. It is

unclear why the BCa CI, which is second-order accurate theoretically, performed worse than the

basic CI and the normal CI. That said, I am not alone in getting mixed results with BCa CIs; for

example, Biesanz, Falk, and Savalei (2010) also found that the BCa CI had inconsistent coverage

for indirect effects. Future studies can perhaps provide more conclusive evidence on whether and

when BCa is a good option in constructing CIs.

Whereas studentized CI overall was shown to be the best method for constructing CIs for

multilevel δ̂T , the method itself has two major limitations. First, it requires that a reasonable

sampling variance estimate of the estimator to be available, which is specific to a given multilevel

structure. Although formulas for computing the variance of multilevel effect size have been



BOOTSTRAP MULTILEVEL EFFECT SIZE 28

derived for three-level data (Hedges, 2011), cross-classified data (Lai & Kwok, 2014), and

partially nested designs (Lai & Kwok, 2016), there are other multilevel structures with more than

three levels and with specific features such as the multiple membership structure (Beretvas, 2011),

where variance formulas have not been derived. One alternative is to use nested bootstrap

(Hinkley & Shi, 1989) so that for each bootstrap sample, an additional layer of bootstrapping with

a few resamples is used to obtain the variance estimate, but such a procedure is very

computationally intensive in practice, especially when sample size is large. Second, the

studentized CI, as well as the basic and the normal CIs, assumes that the parameter space is

unbounded, as is the case for δT which can take any value in the real line. For bounded quantities,

such as R2 or intraclass correlation, direct use of these procedures may give CIs with impossible

upper or lower bound values (e.g., R2 < 0). A solution is to first transform the target quantity to an

unbounded space (see Ukoumunne, Davison, Gulliford, & Chinn, 2003, for an example), obtain

bootstrap CI for the transformed quantity, and then back transform the confidence limits. On the

other hand, percentile and BCa CIs can be directly used for bounded quantities. Future studies are

needed to evaluate various bootstrap CI procedures for other quantities of interest and data with

alternative multilevel structures.

Recommendations of Procedures for Constructing CIs for Multilevel Effect Size

While researchers regularly report measures of uncertainty, such as SE or CI, for sample

statistics such as means and regression coefficients, the same reporting practice has not been but

should be adopted for effect size reporting. After all, effect size aims to quantify the effect of

interest in an interpretable way. A significant barrier for applied researchers to adhere to the

reporting guidelines is the complexity associated with CI computations for effect size, especially

with multilevel data, and I hope the discussion and illustration in the present study will familiarize

researchers with the analytic and bootstrap methods for obtaining CIs for multilevel effect size.

Based on the results of the present study, I have a few suggestions for reporting CIs for

multilevel studies (with data similar to the ones in the current simulation):
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1. When possible, use the studentized CI with the residual bootstrap for moderate to large

sample sizes (i.e., 70 clusters or more, or an average cluster size of 25 or more) and the basic CI

with the residual bootstrap for smaller sample sizes;

2. When normality holds approximately, the LMM-based CI, which requires the asymptotic

variance estimates of the random effect variances and some computations, is also reasonable when

available;

3. If neither the LMM-based CI nor the residual bootstrap CIs are available, obtain the

studentized or the basic CIs by the parametric bootstrap.

Limitations

There are several limitations of the present study that should be addressed in future studies.

First, I only considered a skewed-t distribution as the condition for nonnormal random effects. It

is possible that the results may be different if the random effects follow a different nonnormal

distribution. Second, the bootstrap methods studied in the present study, namely the parametric,

residual, and case bootstrap, only represent three multilevel bootstrap procedures that are better

known to researchers (Van der Leeden et al., 2008). Other bootstrap procedures have been

developed for clustered data (e.g., Deen & de Rooij, 2019; Field, Pang, & Welsh, 2010; Owen &

Eckles, 2012), and future research is needed to examine their performance for multilevel effect

size. Third, I only considered violations of the normality assumption in the current study, but

violations of other assumptions should be tested in future research, such as heterogeneous

variances of level-1 errors and/or level-2 random effects, to which only the case bootstrap is

theoretically robust. Fourth, in this paper I mainly focused on the performance of bootstrap CIs as

the point estimates of effect size were approximately unbiased in the present simulation

conditions. However, the bootstrap can also be used to correct for biases in point estimates of

various statistical quantities of interest, and future studies can explore the use of it in multilevel

analyses (see also Vallejo Seco et al., 2013).

In addition, due to the intensive nature of the bootstrap methods, I was only able to obtain
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1,000 replications per condition, which was not ideal for precisely comparing the various

procedures. In future studies, the bootstrap methods can be evaluated with more replications (and

perhaps with fewer simulation conditions) so that coverage rates can be more accurately

estimated. Finally, simulations done in the present study only pertain to the basic two-level strictly

hierarchical structure with no effect heterogeneity (i.e., no random slopes). Future research should

utilize more complex structures to verify whether the bootstrap procedures, especially the residual

bootstrap, still perform well in those designs.
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Footnotes

1Note that, whereas the definition of SD causes no confusion for single-level studies, it is ambiguous in multilevel

studies, because several different SDs can be used. These include the within-cluster SD (σW ), the between-cluster SD

(σB), and the total SD. Hedges (2007) viewed the issue in a meta-analysis framework, and suggested that the choice

should depend on the nature of other studies in the synthesis. For example, if in most other studies data are collected

from a single site, the within-cluster SD may be a better choice. It is not a purpose of this study to argue which SD

should be used. Indeed, any effect size can be estimated with the bootstrap as long as the estimator can obtained

from the original sample one. I choose the total SD in this study because it uses more information in the data and

theoretically can be converted to a variance accounted for effect size (Snijders & Bosker, 1994).
2In Hedges (2009), V(σ̂2

W ) in the numerator of the second term of equation (8) was dropped with the assumption

that it was negligible, but in this manuscript it is kept for more accurate estimation.
3Technically speaking, the sampling variance of each individual residual depends on their hat values, which is a

measure of the influence of each individual case (or cluster) on themodel estimates. Therefore, rescaling all residuals by

the same value is not mathematically correct, and one should instead rescale the level-2 and level-1 residuals according

to their hat values, as recommended in Davison and Hinkley (1997). In single-level regression, the variance of a

residual is V(êi) = σ2(1 − hii), which depends on the leverage (i.e., hat value, hii) of the ithe observation. Therefore, a

theoretically better residual bootstrap procedure is to transform the residuals differentially as ê∗i = êi/
√

1 − hii so that

V(ê∗i ) = σ
2 for all i. The results based on this improved residual bootstrap procedure are not presented in this paper,

however, as theywere essentially the same as those for the procedure by Carpenter et al. (2003). In the bootmlm package,

Carpenter et al.’s procedure can be called using the argument type = 'residual_cgr', and the hat-value-reflated

procedure can be called using the argument type = 'residual'.
4In a conventional jackknife estimator, li = T(x) −T(i)(x) represents the changes in T(x) when the ith observation is

deleted. As noted in Van der Leeden et al. (2008), as the level-1 observations are not independent for multilevel data,

one can perform jackknife only on the highest level, so lj is the changes in δ̂T when the jth cluster is deleted. In this

paper the BCa CIs were obtained using the grouped jackknife as described in Van der Leeden et al..
5In this paper I adopt the parameterization of skew-t by Azzalini (2013, chapter 4), in which a variable Z = Z0/

√
V

has a skew-t distribution with slant parameter α and degrees of freedom ν, if Z0 follows a skew-normal distribution

with slant = α and V follows a χ2/ν distribution with degrees of freedom = ν. The skew-normal density function is

2φ(x)Φ(αx), where φ(x) is the normal density function and Φ(x) is the cumulative normal density function.
6For example, the parametric and the residual bootstrap with percentile and bias-corrected CIs in MLwiN (Ras-

bash, Steele, Browne, & Goldstein, 2019), the bootstrap procedures in the R packages rms (Harrell, 2019) and

ClusterBootstrap (Deen & de Rooij, 2018), the case bootstrap routines in SPSS and in Stata, and the SAS macros
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by Roberts and Fan (2004) and Wang, Carpenter, and Kepler (2006).
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Table 1
Performance Summary of the Procedures for Constructing 95% Confidence Intervals.

Procedure Coverage (%) Up (%) Lo (%) Shape Relative CI Widtha

ANOVA-based 92.70 (1.83) 3.44 (0.96) 3.87 (1.16) 5.41 0.98
LMM-based 93.70 (1.10) 2.98 (0.67) 3.31 (0.80) 4.95 —
PBoot-norm 93.88 (1.07) 2.91 (0.66) 3.21 (0.78) 4.68 1.01
PBoot-basic 94.06 (1.08) 2.88 (0.67) 3.06 (0.75) 2.63 1.01
PBoot-stud 94.41 (1.02) 2.66 (0.61) 2.93 (0.74) 4.40 1.03
PBoot-perc 93.60 (1.10) 2.93 (0.67) 3.47 (0.84) 8.17 1.01
PBoot-bca 93.53 (1.20) 3.09 (0.73) 3.37 (0.84) 4.09 1.02
RBoot-norm 94.35 (0.89) 2.79 (0.64) 2.86 (0.62) 1.21 1.02
RBoot-basic 94.53 (0.92) 2.77 (0.65) 2.69 (0.63) −1.37 1.02
RBoot-stud 94.75 (0.82) 2.62 (0.61) 2.63 (0.56) 0.32 1.04
RBoot-perc 93.87 (0.86) 2.82 (0.63) 3.31 (0.71) 7.72 1.02
RBoot-bca 93.93 (0.97) 2.99 (0.66) 3.08 (0.70) 1.49 1.03
CBoot-norm 93.69 (0.85) 2.99 (0.66) 3.32 (0.74) 4.94 1.01
CBoot-basic 93.84 (0.93) 3.11 (0.70) 3.05 (0.67) −0.75 1.01
CBoot-stud 93.72 (1.20) 3.07 (0.73) 3.21 (0.78) 2.13 1.06
CBoot-perc 92.94 (1.02) 2.91 (0.88) 4.15 (1.21) 16.64 1.01
CBoot-bca 93.16 (1.16) 3.08 (0.76) 3.76 (1.01) 9.36 1.03

Note. CI = confidence interval. Up = upper-tail error rate. Lo = lower tail error rate.
Shape = (Up - Lo) / (Up + Lo). PBoot = parametric bootstrap. RBoot = residual bootstrap.
CBoot = case bootstrap. normal = normal approximation CI. stud = studentized CI. perc =
percentile CI. bca = bias-corrected and accelerated CI. Numbers represented means (and
standard deviations in parentheses) across conditions.
aRelative CI width was the ratio of the CI width based on one procedure relative to that
based on the LMM-based CI.
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Figure 1. Empirical 95% confidence interval (CI) coverage with normal level-1 errors and normal
level-2 random effects across number of clusters (J) and average cluster size (n̄). The points (line
segments) show the medians (ranges) across conditions. LMM = linear-mixed-model-based
method. PB = parametric bootstrap. RB = residual bootstrap. norm = normal approximation CI.
stud = studentized CI. perc = percentile CI. bca = bias-corrected and accelerated CI.
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Figure 2. Empirical 95% confidence interval (CI) coverage with nonnormal level-1 errors and
normal level-2 random effects across number of clusters (J) and average cluster size (n̄). The
points (line segments) show the medians (ranges) across conditions. LMM =
linear-mixed-model-based method. PB = parametric bootstrap. RB = residual bootstrap. norm =
normal approximation CI. stud = studentized CI. perc = percentile CI. bca = bias-corrected and
accelerated CI.
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Figure 3. Empirical 95% confidence interval (CI) coverage with normal level-1 errors and
nonnormal level-2 random effects across number of clusters (J) and average cluster size (n̄). The
points (line segments) show the medians (ranges) across conditions. LMM =
linear-mixed-model-based method. PB = parametric bootstrap. RB = residual bootstrap. norm =
normal approximation CI. stud = studentized CI. perc = percentile CI. bca = bias-corrected and
accelerated CI.
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Figure 4. Empirical 95% confidence interval (CI) coverage with nonnormal level-1 errors and
nonnormal level-2 random effects across number of clusters (J) and average cluster size (n̄). The
points (line segments) show the medians (ranges) across conditions. LMM =
linear-mixed-model-based method. PB = parametric bootstrap. RB = residual bootstrap. norm =
normal approximation CI. stud = studentized CI. perc = percentile CI. bca = bias-corrected and
accelerated CI.
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Figure 5. Width of 95% confidence interval (CI) coverage across number of clusters (J), average
cluster size (n̄), and normality of level-1 error term (ε). PB = parametric bootstrap. RB = residual
bootstrap. norm = normal approximation CI. stud = studentized CI. perc = percentile CI. bca =
bias-corrected and accelerated CI.
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