
Running head: MISSPECIFIED UNBALANCED CCREM 1

Correcting Fixed Effect Standard Errors When a Crossed Random Effect was Ignored for

Balanced and Unbalanced Designs

Mark H. C. Lai

University of Southern California

Author Note

This manuscript has been accepted for publication in the Journal of Educational and

Behavioral Statistics on 03/17/2019.

Mark H. C. Lai, Department of Psychology, University of Southern California.

Correspondence concerning this article should be addressed to Mark Lai.

Mark Lai is an Assistant Professor at the Department of Psychology, University of Southern

California, 3620 South McClintock Ave., Los Angeles, LA 90089-1061; email:

hokchiolai@usc.edu. His research interests are effect size and analytic issues in multilevel

modeling and evaluation of measurement invariance using structural equation modeling.



MISSPECIFIED UNBALANCED CCREM 2

Abstract

Previous studies have detailed the consequence of ignoring a level of clustering in multilevel

models with straightly hierarchical structures and have proposed methods to adjust for the fixed

effect standard errors. However, in behavioral and social science research, there are usually two or

more crossed clustering levels, such as when students are cross-classified by schools and

neighborhoods, yet it is not uncommon that researchers focus only on one level of clustering.

Using the generalized least squares framework, in this study we derive the bias in the fixed effect

standard error estimators when one crossed random effect is omitted. We then showed, using data

from the Scotland Neighborhood Study, how one can correct for the standard errors and obtain

corrected statistical inference when a misspecified two-level model was used in a primary study,

which is useful when evaluating observational studies or cluster randomized trials that ignored a

crossed random effects or when conducting meta-analyses. In addition, our analytic results

provide theoretical insights on how one can quantify imbalance with cross-classified data by the

strength of association between the two-crossed random effects in a contingency table, and how

the degree of imbalance relates to the correction factor for the fixed effect standard errors.

Keywords: cross-classified, multilevel model, correction, standard error, misspecification
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Correcting Fixed Effect Standard Errors When a Crossed Random Effect was Ignored for

Balanced and Unbalanced Designs

Data collected in behavioral and social science research commonly are clustered into

multiple levels, such as schools, classrooms, or neighborhoods, and are thus dependent. It is well

known that when the dependencies among the observations are not correctly taken into account,

the standard errors (SE) of the regression coefficients will usually be underestimated (e.g., Hox,

Moerbeek, & Van de Schoot, 2018), and the estimator of the coefficients is generally less efficient

(i.e., with larger sampling variability, Maas & Hox, 2005) than using approaches designed to

handle clustered data, such as multilevel modeling. Previous research has studied the impact of

ignoring clustering in various multilevel designs, including two-level designs (Berkhof &

Kampen, 2004; Snijders, 2005), three- and four-level designs (Moerbeek, 2004; Van den

Noortgate, Opdenakker, & Onghena, 2005), and cross-classified designs (Luo & Kwok, 2009).

Such research both contributed to methodological understanding of multilevel models and

addressed the practical need of obtaining corrected SE and statistical inferences when raw data are

not available for a primary study that did not account for all levels of clustering.

In this article, we analytically examined the impact of ignoring one of two crossed random

effects of clustering for designs with unbalanced cell sizes. Specifically, we derived a close form

expression of the bias in the estimated SE and sampling variance (i.e., SE2) of the fixed effects,

and demonstrated how one can obtain corrected SEs and statistical inference as was done in

Hedges (2007a) for two-level designs. We also showed that unbalanced cell sizes induced an

association on the two crossed random effects on the outcome, and the impact of ignoring one

level of clustering is generally smaller.

This article is relevant both theoretically and practically. First, from a methodological stand

point, it provides a deeper understanding on cross-classified multilevel designs by specifically

showing the relative contribution of two crossed random effects on the fixed effect SEs of

predictors at different levels. Second, it shows that imbalance of a cross-classified design,

expressed in terms of unequal cell sizes, can be measured by indices developed for contingency
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tables, and that the degree of imbalance directly factors in the bias of SEs when one crossed

random effect is ignored. Third, on a more practical stand point, it illustrates how fixed effect SEs

can be corrected when data are analyzed with a crossed random effect ignored in a primary study,

which is not uncommon (e.g., school-randomized trials with neighborhoods ignored). Although

ideally one can reanalyze the original data using CCREMs, in some situations there is a need to

evaluate the original study, compare it to another study, or synthesize it with other studies (e.g., in

meta-analyses) when the raw data are not available (Hedges, 2007a). In those situations the

corrected SEs discussed in this article will be particularly useful.

Cross-Classified Random Effect Models (CCREMs)

With the increased accessibility of software packages with multilevel modeling capability

(e.g., SPSS MIXED, Norusis, 2012; SAS PROC MIXED, Littell, 2006; HLM, Raudenbush, Bryk,

Cheong, Congdon, & Du Toit, 2011; MLWiN, Rasbash, Steele, Browne, & Goldstein, 2017; nlme,

Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2018; and lme4, Bates, Mächler, Bolker, &

Walker, 2015 in R), for the past decade applied educational researchers have become more aware

of the need to model the effect of clustering such as schools or classrooms. On the other hand,

educational data can have a highly complex structure, as student-level variables can be affected by

multiple contextual factors such as classrooms, schools, neighborhoods, and so forth. Whereas

research methodologists have proposed CCREMs (Goldstein, 1994; Raudenbush, 1993) to handle

multiple random effects that are crossed and do not follow a hierarchical structure (e.g.,

neighborhoods and schools where students from the same neighborhood attend multiple schools,

and students in the same school come from multiple neighborhoods), not until recently did these

CCREMs become more popular. The increasing popularity of CCREM is evident as a simple

search in the Educational Research Information Center (ERIC) database with the keyword

“cross-classified” and “crossed random” found only 11 journal articles in the period 1993–2005

but 72 journal articles in the period 2006–2016.

The increasing adoption of CCREMs means that (a) it is of paramount importance to
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understand the statistical properties of such models, and (b) there is a need to obtain corrected

statistical inference for older literature when CCREMs were not yet developed and routinely used.

In a Monte Carlo simulation study, Meyers and Beretvas (2006) found that when a crossed random

effect was ignored, the SEs of fixed effect estimates for predictors at the ignored level were

generally underestimated, and the magnitude of SE bias increased with a higher intraclass

correlation and a larger cluster size for the ignored level, and decreased when the residuals of the

two crossed random effects were correlated. Luo and Kwok (2009) provided analytic results for

the impact of ignoring a crossed random effect in three-level CCREMs with balanced designs, and

demonstrated the downward biases in the SEs with unbalanced designs using Monte Carlo

simulation. Luo and Kwok (2012) further expanded the results to longitudinal settings where

students are cross-classified by multiple school memberships, and showed with simulation studies

that the variance components were incorrectly estimated and the fixed effect SEs were

underestimated when students’ mobility was not correctly modeled by ignoring the

cross-classification of the clustering levels.

We aimed to achieve several purposes in this paper. First, we derived a general form of the

bias on the SEs of the fixed effects coefficients when a two-level hierarchical linear model (HLM),

which only accounts for one level of clustering, is used to model data cross-classified by two levels,

and showed how such bias can be corrected. The closed form expression of the bias was obtained

using generalized least squares (GLS), which is asymptotically equivalent to the maximum

likelihood (ML) and restricted maximum likelihood (REML) estimators, and they are identical in

finite samples when the variance components are known (Snijders & Bosker, 1993). Then we

made explicit the link between unbalanced cross-classified structure (i.e., with unbalanced cell

sizes) and the association for the contingency table of the two crossed random effects, and used

that to express the corrections for predictors defined at different levels of clustering. Finally, we

demonstrated how the fixed effect SEs can be corrected using an empirical example with the

Scotland Neighborhood Study data (Garner & Raudenbush, 1991; Raudenbush & Bryk, 2002).
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Model and Notation

Consider a multilevel model with two crossed random effects, A and B. For simplicity, we

assume that the model contains only one single fixed predictor, x, with a fixed effect parameter γ,

but x can be defined at any level. The results should generalize to multiple predictors as long as

the multicollinearity among them are taken into account in the misspecified model. Let a be the

number of clusters for level A and b be the number of clusters for level B in the sample. A general

CCREM model can be formulated as

y = xγ + Z1u + Z2v + ε, (1)

where y and x are an N × 1 column vectors of, respectively, the scores of the response variables

and of the fixed predictor, Z1 and Z2 are the N × a and N × b matrices of 0s and 1s denoting the

group membership for each of the N observations on level A and level B, and u and v, are column

vectors of length a and b of random effects for A and B, and ε is the column vector of length N of

the within-cell level error terms. The random effects and errors are assumed independent and

normally distributed such that u ∼ N(0, τ2
AIa), v ∼ N(0, τ2

BIb), and ε ∼ N(0, σ2IN ). Note that given

the complexity of CCREM, we limit our discussion to models with no random slopes. In addition,

the model assumes that the interaction between A and B is zero, as a closed form expression for

the bias when the interaction is nonzero generally does not exist with ML/REML estimation.

However, Shi, Leite, and Algina (2010) and Wallace (2015) found that in CCREM with two

crossed random effects, ignoring a non-zero interaction between the crossed random effects only

biased the random effect variance estimates, but not the fixed effect point and SE estimates. This

implies that the presence of an interaction between two crossed random effects had very little

impact on the bias expressions and corrections provided below, so the correction procedure we

proposed in this paper should still give reasonable results when both a crossed random effect and

its interaction with the other crossed random effect was omitted.

Under the CCREM in equation (1), the sampling variance of y is Var(y) = V =
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σ2I + τ2
AZ′1Z1 + τ

2
BZ′2Z2. Under the assumption that the matrix V is positive definite, the GLS

estimator of γ, denoted as γ̂, is
(
x′V−1x

)−1
x′V−1y, with sampling variance Var(γ̂) =

(
x′V−1x

)−1

(Snijders & Bosker, 1993). With ML/REML, the estimated variance of γ̂ can be obtained by

substituting the ML/REML estimates of the variance components, that is,

V̂ar(γ̂) =
(
x′V̂−1x

)−1
,

where V̂ = σ̂2I + τ̂2
AZ′1Z1 + τ̂

2
BZ′2Z2. The SE estimate of γ̂ is then the square root of V̂ar(γ̂).

Relative Bias and Correction of Fixed Effect Standard Errors When Ignoring a Crossed

Random Effect

When the model is misspecified as a two-level HLM with one of the crossed random effect

omitted, the estimators of variance components and fixed effects change. In the discussion below

we assumed that the variance components in the correctly specified model are known so that we

can expression the SE bias as a function of them. Without loss of generality, we assume that level

B is omitted. Let τ̃2
A and σ̃2 be the variance component estimators of level A and the within-cell

level, and γ̃ be the fixed effect estimator, under the misspecified model. The misspecified model

implies that Var(y) = Ṽ = σ̃2I + τ̃2
AZ′1Z1, and the GLS estimator for the fixed effect is

γ̃ =
(
x′Ṽ−1x

)−1
x′Ṽ−1y. Note that γ̃ is still consistent for γ, as also demonstrated in Luo and

Kwok (2009) and Meyers and Beretvas (2006). The true sampling variance of the γ̃, however, has

a sandwich form:

Var(γ̃) = (x′Ṽ−1x)−1x′Ṽ−1VṼ−1x(x′Ṽ−1x)−1. (2)

On the other hand, under the misspecified model, the estimated variance of γ̃, denoted as V̂ar(γ̃),

is generally biased and an underestimate, with

V̂ar(γ̃) =
(
x′Ṽ−1x

)−1
, (3)

Thus, comparing (2) and (3), and define
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VO = V − Ṽ = (σ2 − σ̃2)I + (τ2
A − τ̃

2
A)Z1Z′1 + τ

2
BZ2Z′2, the bias of the estimated variance on a

misspecified model is:

Bias[V̂ar(γ̃)] = −
(
x′Ṽ−1x

)−1
x′Ṽ−1VOṼ−1x

(
x′Ṽ−1x

)−1
. (4)

Because bias is not scale free, it is more instructive to look at the relative bias of the estimated

fixed effect sampling variance: RBias[V̂ar(γ̃)] = Bias[V̂ar(γ̃)]/Var(γ̃). Using (4), the relative bias

expression can be simplified as

RBias[V̂ar(γ̃)] = −
x′Ṽ−1VOṼ−1x

x′Ṽ−1VṼ−1x
. (5)

When variance components are estimated instead of known, we can substitute the variance

components with the ML or REML estimates to approximate the relative bias, as long as the

variance component estimators are consistent. Note that close-form expression of (5), which

involves inverse of Ṽ, generally does not exist except for some special cases, including when the

cluster sizes are equal for each crossed random effect, which we will discuss in the next section.

Once the relative bias is estimated, one can correct V̂ar(γ̃) as

Corrected V̂ar(γ̃) =
V̂ar(γ̃)

1 + RBias[V̂ar(γ̃)]
, (6)

and taking the square root gives the corrected SE of γ̃.

Although expressions (5) and (6) are solvable when one has the raw data, they do not

provide insights into how cluster sizes, degree of imbalance, and magnitudes of variance

components contribute to the degree of bias on the fixed effects. To do so, we need to first express

the estimated variance components under the misspecified HLM in terms of the parameters under

CCREM.
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Estimated Variance Components Under a Misspecified Model

Let ni j be the cell size for the intersection of the ith cluster at level A and the jth cluster at

level B, ni. be the size of the ith cluster at level A, and n. j be the size of the jth cluster at level B.

For a CCREM with equal cluster sizes for both levels A and B such that ni. = cA and n. j = cB but

with cell sizes not necessarily constant, if we ignore level B, one ends up with a regular two-level

HLM with equal cluster sizes, where close-form expression of V̂ar(γ̃) exists given the σ̃2 and τ̃2
A

estimates. Define θA = τ
2
A/σ

2, θB = τ
2
B/σ

2, and κA = cAθA and κB = cBθB. As detailed in

Appendix A, under the misspecified model the variance component estimates become

τ̃
2
A =

σ2

cA
{κA + [ϕ

2s1 − (1 − ϕ′2)s2]κB}, (7)

σ̃
2 = σ2[1 + (1 − ϕ′2)s2κB], (8)

where s1 = 1/(a − 1) and s2 = (b − 1)/(N − a) are known constants, and

ϕ
2 =

a∑
i=1

b∑
j=1

n2
i j

cAcB
− 1, (9)

ϕ
′2 = ϕ2/(b − 1), (10)

which are two quantities that increase with larger degree of imbalance in the cell sizes.

Quantifying the Degree of Imbalance in CCREM

Before substituting (7) and (8) into (5) to obtain the relative bias expressions, we should first

make sense of what ϕ2 and ϕ′2 are, as it leads to insight on a way to quantify the degree of

imbalance in CCREM. As to be shown below and hinted by Luo and Kwok (2009), the degree of

imbalance can affect the bias on the fixed effects, yet it has otherwise not been discussed in

multilevel literature.

Consider again the model defined in (1). Although u and v are assumed independent, their

impact on y depends on Z1 and Z2 (see Figure 1). If Z′1Z2 = n1a1′b, meaning that each cell in the
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contingency table Z′1Z2 has the same size n, the design is balanced, and Z1u and Z2v are

independent. Otherwise Z1u and Z2v are associated. Because A and B are categorical variables,

one can compute the Pearson’s χ2 for contingency table (Pearson, 1900) as:

χ
2 =

a∑
i=1

b∑
j=1

(ni j − ni.n. j/N)2

ni.n. j/N
. (11)

It can be shown that, when the cluster sizes are equal such that ni. = cA and n. j = cB,

χ
2 = Nϕ2 (12)

where ϕ2 is defined in equation (9). Equations (7) to (12) show that τ̃2
A and σ̃2 are direct functions

of the strength of association in the contingency table of A and B. Furthermore, if we look at the

definition of Cramér’s V (denoted as Vc in this article to distinguish it from V = Var[y]; cf.

Grissom & Kim, 2012)—an effect size index for contingency table on a scale of 0 to 1 with 0

meaning balanced and 1 meaning maximum imbalance, we have

V2
c =

χ2/N
min(a − 1, b − 1)

=
ϕ2

min(a − 1, b − 1)

=


ϕ2s1 if a ≤ b

ϕ′2 if a > b
.

As 0 ≤ Vc ≤ 1 and (a − 1)/(b − 1) > 1 when a > b, we also have 0 ≤ ϕ2s1 ≤ 1 and 0 ≤ ϕ′2 ≤ 1.

This implies that one can directly use Vc to quantify the degree of imbalance for cross-classified

data. Three special cases are worth mentioning.
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(a) (b)

Figure 1. Cross-classified random effect models of outcome y with (a) a balanced design (i.e.,
fully cross-classified) and (b) an unbalanced design (i.e., partially cross-classified). Boxes with
sharp corners denote observed variables, circles denote random effects and error term, and boxes
with round corners are used to separate different levels of clustering. Note that the two crossed
random effects, u and v, are assumed independent.

Vc = 0. When Vc = 0, ϕ2 = ϕ′2 = 0, and the data are balanced or fully cross-classified

(see Figure 2a for an example).

Vc = 1, a < b. When Vc = 1, a < b, we have ϕ2 = a − 1. From equation (9) this implies

that
∑a

i=1
∑b

i=1 n2
i j = cBN , and the only way this happens is that B is nested within A (see Figure 2c

for an example). Therefore, in this situation, omitting level B is equivalent to omitting the middle

level in a three-level hierarchical model. Moerbeek (2004) and Van den Noortgate et al. (2005)

showed that ignoring a middle level generally results in underestimated fixed effect SEs at that

level, but may also affect fixed effect SEs at the top and the lowest levels.

Vc = 1, a > b. Similarly, when Vc = 1, a > b, we have the situation where A is nested

within B (see Figure 2d for an example). Therefore, omitting level B is equivalent to omitting the

top level in a three-level hierarchical model. Moerbeek (2004) and Van den Noortgate et al.

(2005) showed that ignoring a top level generally results in underestimated fixed effect SEs at that

level, but may also affect fixed effect SEs at the middle level.
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B1 B2 B3

A1 3 3 3
A2 3 3 3
A3 3 3 3
A4 3 3 3
A5 3 3 3
A6 3 3 3

(a)

B1 B2 B3

A1 8 1 0
A2 7 1 1
A3 0 6 3
A4 1 6 2
A5 0 2 7
A6 0 0 9

(b)

B1 B2 B3 B4 B5 B6

A1 9 9 0 0 0 0
A2 0 0 9 9 0 0
A3 0 0 0 0 9 9

(c)

B1 B2 B3

A1 9 0 0
A2 9 0 0
A3 0 9 0
A4 0 9 0
A5 0 0 9
A6 0 0 9

(d)

Figure 2. Contingency tables of two crossed random effects A and B for (a) fully cross-classified
data, Cramér’s V (Vc = 0), (b) partially cross-classified data, Vc = 0.728, (c) three-level data,
Vc = 1 with B nested within A, and (d) three-level data, Vc = 1 with A nested within B.

Finally, if Vc = 1 and a = b, that A and B are identical and so one of them is redundant.

Whereas a balanced design results in Vc = 0, in real observational data sets with crossed

random effects of clustering, the degree of imbalance is usually quite high. For example, for the

Scotland Neighborhood data used in the demonstration later in the current paper, Vc = .875 for the

contingency table between neighborhood and schools. For the 1988 National Educational

Longitudinal Study (Ingles, Abraham, Karr, Spencer, & Frankel, 1990) data set, Vc = .952 for the

contingency table between middle school and high school.

Relative SE Bias and Corrected SE for Predictors at Different Levels

In this section we present simplified relative SE bias expression for predictors at different

levels, based on equation (5). To precisely distinguish the predictors at different levels, and

drawing on the notations and concepts introduced by Berkhof and Kampen (2004), we define SSx

as the sum of squares of the predictor X and fxA = SSxA/SSx as the proportion of sum of squares

of the predictor X at level A. Note that fxA is sample specific and takes value between 0 and 1. If

X is assumed stochastic and the intercept is included in the model, fxA is the proportion of

variance at level A for X . Similarly, define fxB = SSxB/SSx . Then, in a design with two crossed

random effects, a predictor X can be categorized into four types:

1. a grand mean or an intercept, which corresponds to a column vector of 1s,

2. a level-A predictor with fxA = 1 and 0 ≤ fxB < 1,

3. a level-B predictor with fxB = 1 and 0 ≤ fxA < 1,
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4. a level-1 predictor with 0 ≤ fxA < 1 and 0 ≤ fxB < 1.

Note that when the cell sizes are equal, for a level-A predictor, fxB = 0; otherwise fxB > 0 even for

a level-A predictor, and it is closer to 1 with increasing Vc. Similarly, fxA > 0 for a level-B

predictor unless the cell sizes are equal.

From the matrix expression in (5), with some involved substitutions shown in Appendix B,

the relative bias expression for predictors in closed form with any values of fxA and fxB is

RBias[V̂ar(γ̃)] =
κB[(1 − ϕ′2)s2(1 + κ̃A)

2(1 − fxA) + ϕ
2s1 fxA − (1 + κ̃A)

2 f O
xB]

(1 + κ̃A)
2(1 − fxA + κB f O

xB) + (1 + κA) fxA
, (13)

where κ̃A = cAθ̃A and θ̃A = τ̃
2
A/σ̃

2 (i.e., the analogue of κA, but based on the misspecified model),

f O
xB = fxB − 2 κ̃A

1+κ̃A fxA fxB +
κ̃2
A

(1+κ̃A)2
x′AZ2Z′2xA/cB/SSx , xA = Z1Z′1x/cA a N × 1 column vector

containing the cluster mean at level A of each observation. When fxA = 1, f O
xB is reduced to fxB;

otherwise f O
xB > fxB, which brings the relative bias closer to zero. Therefore, the relative bias on

V̂ar(γ̃) is mainly a function of the clustering effects of A and B (i.e., κ̃A and κB), the degree of

imbalance in the cell sizes (ϕ2 and ϕ′2), and the proportion of sum of squares of the predictor at

different levels ( fxA and fxB). After the relative bias is obtained, the fixed effect sampling variance

and the SE can be corrected using (6). Below we examine the relative sampling variance bias of

the fixed effect estimators for each type of predictor for both balanced and unbalanced designs.

Grand mean/intercept. First, for the special case of the grand mean in an unconditional

model or the intercept in a conditional model, which corresponds to a column vector of 1s in the

design matrix x, we have fxA = fxB = 1 such that all level of clustering contributed to the

sampling variance. The relative bias expression in (13) then simplifies to

RBias[V̂ar(γ̃)] =
[ϕ2s1 − 1]κB

1 + κA + κB
. (14)

Therefore, the estimated sampling variance of the grand mean or the intercept is negatively biased

with relative bias equals −κB/(1 + κA + κB) for a balanced design with ϕ2 = 0, and is unbiased

only when ϕ2s1 = 1, which only happens when B is completely nested in A (i.e., the omitted level
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is the middle level in a three-level data structure). Asymptotically, from equation (14),

lima→∞ RBias[V̂ar(γ̃)] → −1, and limb→∞ RBias[V̂ar(γ̃)] → 0, so, for fixed cell sizes, the bias is

generally negligible when number of clusters is large for the omitted level (i.e., B). Also, the

relative bias does not depend on the degree of unbalanced cell size sizes when a or b is large.

Level-A predictors. For variables defined at level A (i.e., fxA = 1), the relative bias

expression on the variance of the fixed effect estimators simplifies to

RBias[V̂ar(γ̃(A))] =
[ϕ2s1 − fxB]κB

1 + κA + fxBκB
, (15)

which is similar to that for grand mean/intercept. Although both Luo and Kwok (2009) and

Meyers and Beretvas (2006) both suggested that when clustering of A was accounted for, the SE

bias for variables at the level A was negligible, from the above analytical expression one can see

that such a finding in the previous literature was only true when fxB and ϕ2s1 are similar or when

κB is small relative to κA (so that the numerator is small). One special case is when the design is

balanced with ϕ2 = 0, which by definition implies that fxB = 0, and so the relative bias is zero.

Also, if X is a stochastic level-A variable, fxB converges to ϕ2s1 in large sample, so the relative

bias will be close to zero (as were the case in previous simulation studies). When X is fixed and

the design is unbalanced, however, ϕ2s1 can be smaller or larger than fxB. Figure 3 illustrated

equation (15) across different combinations of a, b, average cell size (n̄), degree of unbalanced

cluster sizes, and conditions of fxB − ϕ
2s1, with θA = 2/7 and θB = 1/7 (which corresponds to

conditional intraclass correlations of .20 and .10 for A and B, respectively). The figure shows that,

generally, the relative bias of the sampling variance of the fixed effects at level A is relatively

small when level B is omitted. Asymptotically, lima→∞ RBias[V̂ar(γ̃)] → −1 and

limb→∞ RBias[V̂ar(γ̃)] → 0, so the bias does not depend on the degree of imbalance of cell sizes

when a or b is large, as in the case for the grand mean/intercept.
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Figure 3. Relative sampling variance bias of fixed effect estimators for a predictor at level A when
ignoring a crossed random effect B. a, b = number of clusters at level A and level B.
s1 = 1/(a − 1). V2

c = squared Cramér’s V . n̄ = average cell size. fxB = proportion of sum of
squares of the predictor at level B. ϕ2 is defined in equation (9).

Level-B predictors. For variables defined at level B (i.e., fxB = 1), the expression of the

relative variance bias of the fixed effect can be obtained by substituting fxB = 1 into

expression (13), with f O
xB = 1 − 2 κ̃A

1+κ̃A fxA +
κ̃2
A

1+κ̃Ax′AZ2Z′2xA/cB/SSx , which is generally smaller

for larger fxA. For a balanced design, ϕ2 = ϕ′2 = fxA = 0 and f O
xB = 1, so the relative bias

expression simplifies to

RBias[V̂ar(γ̃(B))] =
κB(s2 − 1)

1 + κB
,

which increases with larger a but decreases with larger b. For unbalanced designs, the

RBias[V̂ar(γ̃)] expression does not simplify much. Therefore, it is instructive to plot the relative

variance bias for different degrees of imbalance and cluster size combinations, as shown in

Figure 4. We approximated f O
xB by

(
1 − κ̃A fxA

1+κ̃A

)2
, which holds in large sample for a stochastic

level-B predictor. As the value of fxA is close to ϕ2s1 for a stochastic level-B predictor, in the

figure we showed relative biases across three conditions: fxA > ϕ
2s1, fxA = ϕ

2s1, and fxA < ϕ
2s1.

The relative bias generally is larger for larger cluster size at the omitted level (i.e., increases in a or
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n̄, cB = an̄), and under such conditions the degree of imbalance exerts only negligible influence on

the relative bias of the sampling variance. When a ≤ b, increases in the imbalance of cell sizes

resulted in less biased sampling variance estimates, as some of the missing variance in B is

captured by A due to their increased association. When ϕ2s1 = 1 such that B is nested within A,

meaning that B is the middle level, ignoring B does not affect the SE estimate of fixed effects at

level B, as long as A, the top level, was included.
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Figure 4. Relative sampling variance bias of fixed effect estimators for a predictor at level B when
ignoring a crossed random effect B. a, b = number of clusters at level A and level B.
s1 = 1/(a − 1). V2

c = squared Cramér’s V . n̄ = average cell size. fxB = proportion of sum of
squares of the predictor at level A. ϕ2 is defined in equation (9).

Level-1 predictors. For general level-1 predictors, fxA > 0 and fxB > 0. In other words,

similar to the outcome variable Y , a level-1 predictor X can have varying degree of intraclass

correlations at level A and at level B. If X is a stochastic variable with no level-A and level-B

variance components at the population level, fxB and fxA both will converge to 0 as sample size

increases, so will f O
xB; from (13) it can then be shown that the relative bias will converge to 0, and

correction will not be needed.1 Otherwise the bias needs to be computed based on the general

form in (13). As fxB gets closer to 1, the variable becomes closer to a level-B predictor so that the
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downward bias on the fixed effect sampling variance is larger, similar to the pattern shown in

Figure 4.

Bias With Unequal Cluster Sizes

Similar to previous analytic studies on fixed effect estimators in the presence of clustering

(e.g., Berkhof & Kampen, 2004), we assume that the cluster sizes for each crossed random effect

were equal (although the cell sizes are not equal unless Vc = 0) when deriving expression (13) and

the special cases, as otherwise the standard error estimates of the ML/REML fixed effect

estimators involve intractable matrix algebra. However, given that cluster sizes are usually not

equal in real data, it is important to ask how the above discussion holds with unequal cluster sizes.

To shed some lights on that question, we simulated data from a CCREM model with N = 5,600,

a = 200, b = 10, and unbalanced cluster sizes for levels A and B with largest and smallest cluster

sizes of 213 and 19 (∼ a 11 to 1 ratio), and 1486 and 377 (∼ a 4 to 1 ratio). We set τ2
A = 0.4,

τ2
B = 0.1, and σ2 = 1, generated a normally distributed predictor X that was either a level-1,

level-A, or level-B variable, under either a balanced (Vc = 0) or unbalanced (Vc = .84) design.

With 2,000 replications, we compared the empirical SE, the average uncorrected SE, and the

average corrected SEs with level B omitted. Specifically, when X was either a level-1 or a level-A

predictor, based on our previous discussions the estimated SE of X is expected to have little bias

when level B was ignored, and the simulation confirmed this with relative biases of −1.5% to 2%

for the uncorrected SE and −2.3% to 6.1% for the corrected SE. When X was a level B predictor,

however, the uncorrected SE showed strong downward relative biases of −85.8% and −79.6% for

balanced and unbalanced designs, whereas the corrected SE had much smaller relative biases of

2.8% and −12.2%. Therefore, the simulation suggested that the corrected SE can correct most of

the bias even with with unequal cluster sizes.

Real Data Illustration

To illustrate the application of our analytic results for estimating the biases in the fixed effect

SEs with a crossed random effect omitted and to obtain corrected SEs in real data, we used data
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from the Scotland Neighborhood Study (Garner & Raudenbush, 1991; Raudenbush & Bryk,

2002) consisting of 2,310 student cross-classified by 524 neighborhoods (with 1 to 16 students in

one neighborhood) and 17 schools (with 22 to 286 students in one school). A hypothetical

research question is whether neighborhood-level social deprivation (DEPRIVE; M = 0.021,

SD = 0.622) can predict student-level total attainment (ATTAIN; M = 0.116, SD = 1.00). We

compared three analytical models in this illustration: a two-level HLM only modeling the

clustering due to neighborhoods (HLM-N), a two-level HLM only modeling the clustering due to

schools (HLM-S), and a two-level CCREM modeling both clusterings due to neighborhoods and

schools (CCREM). We analyzed the three models using lme4, and the results were shown in

Table 1. For HLM-N, the fixed effect estimate of DEPRIVE was γ̃01 = −0.521, SE = 0.038; for

HLM-S, γ̃01 = −0.473, SE = 0.033; for CCREM, γ̂01 = −0.466, SE = 0.038. Just looking on the

estimated SEs one may be tempted to think that the model ignoring the school effect better capture

the sampling variability in DEPRIVE as the SEs were similar for HLM-N and CCREM.

However, the fixed effect estimators in all three models are different with different true

sampling variances, and the estimator under CCREM is likely to be the most efficient. Therefore,

even though ŜE(γ̃01) under HLM-N was similar to ŜE(γ̂01) under CCREM, the former

underestimated the true sampling variance of γ̃01, a less efficient estimator. To verify this, we

treated the CCREM as the true model and generated 20,000 data sets, and obtained the empirical

standard errors for the fixed effect estimators as the standard deviation of the γ01 estimates across

all simulated data sets for all three models; the results were shown in the “Monte Carlo SE” row in

Table 1. It was found that the true SE of γ̃01 under HLM-N was 0.0475, so the estimated SE had a

relative bias of 0.038/0.0475 − 1 = −.20. On the other hand, the true SE of γ̃01 under HLM-S was

0.0387, so the estimated SE had a relative bias of 0.033/0.0387 − 1 = −.15. Therefore, in this

situation had one omitted either the school or the neighborhood level, the estimated SE for

DEPRIVE would be too small, leading to confidence interval being too narrow and inflated chances

of committing a Type I error, so correction is needed to obtain proper statistical inference. Also,

even though DEPRIVE is a neighborhood-level variable, in this example the bias on the estimated
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SE was larger when the school level was ignored than when neighborhood level was ignored.

The stronger influence of the school level on a neighborhood-level predictor can be

understood by computing κ̂NEIGH and κ̂SCH. The conditional variance component ratios were

computed as θ̂NEIGH = τ̂NEIGH/σ̂2 = .0760 and θSCH = τ̂SCH/σ̂2 = .0536, which did not show a

substantial difference. However, with 524 neighborhoods and 17 schools, one gets

κ̂NEIGH = 2310/524 × .0760 = 0.335 and κ̂SCH = 2310/17 × .0536 = 7.285 so accounting for

school-level clustering might be more important even for neighborhood-level variable. This is

consistent with the previous discussion that, when the number of clusters in neighborhood is large

and the cluster size is small, its impact on the fixed effect standard error tends to zero. The

Cramér’s V for the data was computed as .875, so part of the missing cluster information when

one of the crossed random effects is omitted may be recovered by the inclusion of the other level.

To compute the corrected SE, first note that the variance proportion of DEPRIVE at the

school level (i.e., fXSCH) was .152, and ϕ2s1 = V2
c (b − 1)/(a − 1) = 0.0234, so ϕ2s1 − fXSCH < 0,

and so the SE for DEPRIVE will be underestimated based on our discussion on Level-A predictors

(i.e., at the modeled crossed random effect). Under HLM-N, κ̃NEIGH = (2310/524) × (.087/.812)

= 0.4723. Using equation (15), one obtained a relative bias of V̂ar(γ̃01) as −0.38, or a correction

factor on the estimated SE of
√

1/(1 − 0.38) = 1.27, so the corrected SE under HLM-N is 0.0491,

which was comparable to the Monte Carlo SE of 0.0475, even though the cluster sizes were quite

unbalanced. Similarly, using equation (13) and κ̃SCH = (2310/17) × (.046/.865) = 0.234, one

obtained a corrected SE under HLM-S of 0.0367, which was also slightly underestimated but

comparable to the Monte Carlo SE of 0.0387. Therefore, using the bias expressions presented in

this paper, one can obtain a less biased estimate of the fixed effect SEs if an original study ignored

either the neighborhood-level or the school-level clustering.

Correction When True Parameters Are Unknown

The previous computation of the corrected SE when neighborhood was omitted (i.e., under

HLM-S) assumed that κNEIGH, Cramér’s V , and fXSCH, were known. In reality, however, these
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quantities are most likely unknown, and educated guess are needed based on previous literature as

well as researchers’ substantive knowledge. For our example, Brännström (2008) reported that the

intraclass correlation of mathematics achievement with respect to neighborhood was .084 based

on a sample of 26,384 students in Sweden secondary schools, which can be converted to

θ̂NEIGH = .084/(1 − .084) = .092, and so κ̂NEIGH = 2310/524 × .092 = 0.40. For Cramér’s V , as

previous studies generally did not report its value for the cross-classification of neighborhood and

school, one needs to make an educated guess. As students in the same neighborhood tend to

attend the same school, we expect Vc to be large. To be conservative we assume that V2
c = .50, as a

smaller Vc gives a larger corrected SE. Finally, we approximated fXSCH as ϕ2s1 = 0.5, which

approximates its expected value for a stochastic neighborhood-level predictor across schools, and

f O
xB = 1 + κ̃SCH(1 − fXSCH)

2 = 20.02. Using equation (13), one estimates the relative bias as

−0.1169, and so the corrected SE = .033/(1 − 0.1169) = 0.037, which was close to the true SE of

γ̃01 under HLM-S. As a smaller fXSCH results in a bigger correction on the SE, because it implies

that less information is captured for the school level, one can obtain a more conservative corrected

SE by using fXSCH = ϕ
2s1/2 = 0.25, which resulted in a relative bias estimate of −0.1728 and a

corrected SE of 0.040, slightly larger than the true SE of γ̃01 under HLM-S.

Discussion and Conclusion

In the present paper, we discussed methods to quantify the degree of unbalanced cell sizes

in cross-classified data, and provided analytical expressions of the relative bias on the sampling

variance of fixed effects when one of the two crossed random effects is ignored. The discussion

has both theoretical and practical implications. Theoretically, to our knowledge our paper is the

first in the multilevel modeling literature to discuss the associations between two crossed random

effects of clusterings and link statistical indices in contingency table literature (e.g., Cramér’s V)

to discuss clustering structures in multilevel data. With that, we were able to extend the analytical

and simulation results from Luo and Kwok (2009) and Meyers and Beretvas (2006) to a more

general framework for evaluating the impact of omitting a crossed random effect for unbalanced
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Table 1
Multilevel Results for Scotland Neighborhood Study

HLM-N HLM-S CCREM
Intercept 0.100∗ 0.100 0.095

(0.024) (0.056) (0.056)
DEPRIVE −0.521∗ −0.473∗ −0.466∗

(0.038) (0.033) (0.0383)
Corrected SE (0.0491) (0.0367) —
Monte Carlo SE (0.0475) (0.0387) (0.0382)
AIC 6283.9 6269.6 6251.9
BIC 6306.9 6292.6 6280.6
τ̂NEI 0.087 0.061
τ̂SCH 0.046 0.043
σ̂2 0.812 0.865 0.807

Note. HLM-N = Two-level HLM accounting only for the
neighborhood clustering effect. HLM-S = Two-level
HLM accounting only for the school clustering effect.
CCREM = Cross-classified random effect model
accounting for both the neighborhood and the school
clustering effects. DEPRIVE = neighborhood-level
social deprivation. The outcome is student-level total
attainment. Standard errors are shown in parentheses.
∗p < .001.

CCREMs, where we showed that the bias mainly depends on (a) the clustering effects of the two

levels (i.e., κA and κB), (b) the association between them (i.e., Vc), and (c) the proportions of sum

of squares of the predictor at the two crossed random effects (i.e., fxA and fxB) and at the

within-cell level. As recent literature provided more attentions to clustered data with a

non-hierarchical structure, such as a cross-classified structure, more methodological work is

needed to understand the theoretical properties of the corresponding modeling approaches.

The findings from previous literature were also mostly consistent with our framework. For

example, Meyers and Beretvas (2006) found that the magnitude of the downward SE bias on the

fixed effect estimates at the omitted level was larger with larger intraclass correlation and larger

cluster size of the omitted level, but was smaller when the residuals of the two crossed random

effects (i.e., u and v in our notations) were correlated. It is clear that larger intraclass correlation

and cluster size contributes to κB, which has a large impact of the relative bias based on our
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analytical expression. The effect of correlated u and v can be explained as contributing to the

association between Z1u and Z2v in the CCREM in equation (1) even under a balanced design, so

the consequence is similar to unbalanced cell sizes which also leads to an association between

Z1u and Z2v even when u and v are independent.

The results in the present paper also have practical implications for researchers, and perhaps

are most important for evaluation and meta-analysis of primary studies that did not account for

some crossed random effects of clustering. Given that CCREMs have only become popular in the

past two decades, some empirical studies using multilevel analysis, especially the ones dated

earlier, might have omitted one or more crossed random effects. As demonstrated in the real data

illustration, using the analytical results in the present study, researchers can obtain a corrected

standard errors/variances of the fixed effect estimates of interest, and thus can correct for the

biases in statistical inference in previous studies, an idea emphasized in Hedges (2007b) and

Hedges (2009) for studies with two-level hierarchical data. Despite the increasing amount of

cluster-randomized trials in education and other social sciences in recent years, there have been

relatively few studies that actively modeled crossed random effects, meaning that results of many

treatment effects in the literature may need to be adjusted. For example, Moerbeek and Safarkhani

(2018) provided an example where soldiers are randomly assigned to different therapeutic

approaches with different therapists, but the soldiers are also naturally nested within army units.

Another common example in education is when classrooms of students are randomly assigned,

but students are cross-classified by current classroom (e.g., 2nd grade) and also past-year

classroom (e.g., 1st grade), yet primary studies may not have accounted for the shared variance of

Grade 1 classroom/teacher effects. The corrections presented in this paper are thus crucial for

evaluating whether conclusions in primary studies may change if previously omitted level of

clustering had been appropriately accounted for. They are also needed for meta-analyses when

some primary studies to be synthesized have complex data structures, but some crossed random

effect had been omitted.

To successfully obtain a corrected variance or SE estimate when evaluating a primary study
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or doing a meta-analysis using the results in this paper, one needs to have some information on the

clustering effects (κA and κB) of the crossed random effects as well as the associations between

the levels in observational data. Whereas one can easily obtain the clustering effects from the

intraclass correlations, the values of which have been well researched for different educational

outcomes on varying grade levels and demographic groups (Hedges & Hedberg, 2007; Kelcey &

Phelps, 2013), very little is known about the association between crossed random effects, such as

middle school and high school, school and neighborhood, and kindergarten classroom and Grade

1 classroom. Therefore, we recommend researchers doing primary research using CCREM report

the Cramér’s V value of their crossed random effects, just like it is common practice to report the

intraclass correlation in HLM. In addition, for both HLM and CCREM it is useful to report the

proportion of variance of the predictors at different levels (e.g., fxA and fxB for CCREM), as they

helped correct for the biases of ignoring a level of clustering in previous studies (see also Berkhof

& Kampen, 2004). We also encourage future systematic reviews on the associations between

crossed random effects commonly observed in CCREM. These not only help facilitate successful

corrections in meta-analysis, but also potentially lead to benchmark values for design parameters

when designing studies involving cross-classified data when the researchers do not have total

control over the degree of imbalance of cell sizes.

The results also have practical implications for researchers designing primary studies that

involve multiple crossed random effects of clustering. When designing such studies, whereas

researchers usually have some control over the primary sampling unit, such as the number of

schools and the number of students in each school, they generally do not have control on the other

crossed random effect, such as the number of neighborhoods and the cell sizes for the

cross-classification of schools and neighborhoods. Understanding the impact of each crossed

random effect on the fixed effect variance estimates thus helps researchers determine which

level(s) are the most important to have membership information collected. For example, from our

real data illustration it was shown that, even though deprivation is a neighborhood level variable,

one needs to collect information on school-level clustering and use an appropriate CCREM,
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because of the strong design effect (i.e., high intraclass correlation and/or large cluster size) of the

school level and the high variability of deprivation across different schools (i.e., high fXSCH).

The present study provided analytical expressions on factors affecting the relative bias

induced by omitting a crossed random effect in CCREMs, and illustrated their usage in a real data

example. We believe that this will help both substantive researchers and quantitative

methodologists better understand these models. The limitations of the present study include the

focus on models with only two crossed random effects and the assumption that there is no

interaction between crossed random effects and no random slopes in the data and the model.2

Also, our derivation was based on the assumption that the cluster sizes at each of the two crossed

random effects are constant, and even though a small follow-up simulation showed the corrections

still work to correct most of the bias, they may be less effective with highly unbalanced cluster

sizes, or other combinations of Cramér’s V and unbalanced cluster sizes. Future research effort is

needed to address these issues.
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Footnotes

1It is rare in real research, specially for observational studies, to have a level-1 predictor with identical cell means

so that fxA and fxB are zero exactly, which means that all the cell means are exactly the same. An example of such

predictors is a level-1 binary treatment or intervention indicator with equal number of participants in the treatment and

in the control condition for every clusters in A and every clusters in B. For such a purely level-1 predictor, the relative

bias expression simplifies to

RBias[V̂ar(γ̃(1))] = (1 − ϕ′2)s2κB .

From the above expression, it is obvious that the relative bias is non-negative and is zero only when ϕ′2 = 1 (i.e., A

nested within B) or when τ2
B = κB = 0, which is consistent to the conclusion in Luo and Kwok (2009) that ignoring

an upper-level crossed random effect resulted in overestimated sampling variance of the fixed effects at the next lower

level for a balanced design. The limiting value for the relative bias is [(b− 1)/b](1−ϕ′2)θB as cB →∞, so the upward

bias is larger for balanced designs (i.e., ϕ′2 is close to 0) and when the omitted level has a relatively large variance

component.
2We re-analyzed the data in the Scotland Neighborhood Study, and despite a statistically significant interaction

effect between the crossed random effects on the intercept-only model, τ̂2
A×B = .068, p = .021, the Monte Carlo

standard errors of the misspecified fixed effect estimators changed by only 1%when the data generating model includes

the interaction: Var[γ̃] = 0.0481 [vs. 0.0475 in Table 1] under HLM-N and 0.0392 [vs. 0.0387 in Table 1] under

HLM-S.
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Appendix A

Variance Component Estimators Under the Misspecified Model

Under the cross-classified model defined in (1), using the results from Searle, Casella, and

McCulloch (2006, p. 183), the expected sum of squares (E[SS]) of the outcome Y can be

partitioned as

E(SSA) = (N − k1)τ
2
A + (k3 − k2)τ

2
B + (a − 1)σ2

E(SSB) = (k4 − k1)τ
2
A + (N − k2)τ

2
B + (b − 1)σ2

E(SSe) = (k1 − k4)τ
2
A + (k2 − k3)τ

2
B + (N − a − b + 1)σ2,

with degrees of freedom (df ) = a − 1 for SSA, b − 1 for SSB, and N − a − b + 1 for SSe, and

k1 =
∑

i

n2
i./N, (A1)

k2 =

b∑
j=1

n2
. j/N (A2)

k3 =

a∑
i=1

b∑
j=1

n2
i j/ni., (A3)

k4 =

b∑
j=1

a∑
i=1

n2
i j/n. j (A4)

With equal cluster sizes for A and B such that n1. = n2. = . . . = na. = cA and

n.1 = n.2 = . . . = n.b = cB , we have k2 = cB and k3 =
∑a

i=1
∑b

j=1 n2
i j/cA. However, when level B is

omitted, we have E(SS∗e) = E(SSB) + E(SSe), which equals

E(SS∗e) = (N − k3)τ
2
B + (N − a)σ2

with df = N − a. One way to measure the overlap between A and B is the ratio (k3 − k2)/(N − k2),

which summarizes the relative influence of τ2
B on SSA and SSB due to the unbalanced cell sizes.

With equal cluster sizes for B, this ratio is simplified to (k3 − cB)/[cB(b − 1)] and can be shown
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equal to ϕ′2 in equation (10).

When cell sizes are all equal to n̄, k3 = abn̄2/cA = an̄ = cB, so k3 − k2 = cB − cB = 0. As a

result, ϕ2 = 0, E(SSA) is not a function of τ2
B, and all sum of squares in B will go to the

within-cluster level in the misspecified model such that E(SS∗e) = cB(b − 1)τ2
B + (N − a)σ2, and

E(SSA) is not a function of τ2
B; otherwise, k3 − k2 > 0, ϕ > 0, and E(SSA) included a component

due to B. It can be shown that the maximum of k3 − k2 is N − cB when k3 = N , a situation where

ϕ′2 = 1 so that all sum of squares in the omitted level B will go to A (and N − k3 = 0 so that

E[SS∗e] is not a function of τ2
B).

When level B is ignored one obtains a balanced two-level model where the ANOVA

estimates and the REML estimates of the variance components coincide (Searle et al., 2006).

Using the results in Searle et al. (2006), the expected mean squares with equal cluster sizes can be

expressed as

E(MSA) =
SSA

a − 1
= cAτ

2
A +

k3 − k2
a − 1

τ
2
B + σ

2

E(MS∗e) =
SS∗e

N − a
=

N − k3
N − a

τ
2
B + σ

2.

The estimated variance components under the misspecified model are

τ̃
2
A =

E(MSA) − E(MS∗e)
cA

= τ2
A +
[(k3 − k2)/(a − 1) − (N − k3)/(N − a)]τ2

B

cA

= τ2
A +

cB

cA
[ϕ2s1 − (1 − ϕ′2)s2]τ

2
B

=
σ2

cA
[κA + [ϕ

2s1 − (1 − ϕ′2)s2]κB],
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and

σ̃
2 = E(MS∗e ) = σ

2 + τ2
B

N − k3
N − a

= σ2 + cB(1 − ϕ′2)s2τ
2
B

= σ2[1 + (1 − ϕ′2)s2κB],

where s1 = 1/(a − 1) and s2 = (b − 1)/(N − a).
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Appendix B

True Sampling Variance of the Fixed Effect Estimators Under a Misspecified Model

When cluster sizes in level A are equal such that Z1 = Ia ⊗ 1cA, it can be shown that

Ṽ−1
= (σ−2)

(
IN −

θ̃A
1+κ̃AZ1Z′1

)
. From equation (5), if we let Q1 = x′Ṽ−1Ṽ−1x,

Q2 = x′Ṽ−1Z1Z′1Ṽ−1x, and Q3 = x′Ṽ−1Z2Z′2Ṽ−1x, then the relative bias can be expressed as

RBias[V̂ar(γ̃)] =
(σ̃2 − σ2)Q1 + (τ̃

2
A − τ

2
A)Q2 − τ

2
BQ3

σ2Q1 + τ
2
AQ2 + τ

2
BQ3

, (A5)

so by finding Q1, Q2, Q3 and substituting them into the expression will lead to equation (13).

With some algebra,

Q1 =
SSx

σ̃4

[
(1 − fxA) +

fxA

(1 + κ̃A)
2

]
Q2 =

SSx

σ̃4
cA fxA

(1 + κ̃A)
2

Q3 =
1
σ̃4

[
x′Z2Z′2x −

2θ̃A

1 + κ̃A
x′Z1Z′1Z2Z′2x +

θ̃2
A

(1 + κ̃A)
2 x′Z1Z′1Z2Z′2Z1Z′1x

]
=

SSx

σ̃4

[
cB fxB −

2θ̃A

1 + κ̃A
cAcB fxA fxB +

θ̃2
A

(1 + κ̃A)
2

c2
Ax′AZ2Z′2xA

SSx

]
=

SSx

σ̃4

[
cB fxB −

2cBκ̃A

1 + κ̃A
fxA fxB +

κ̃2
A

(1 + κ̃A)
2

x′AZ2Z′2xA

SSx

]

Also, using the expressions of τ̃2
A and σ̃2 in Appendix A, we have

(1 + κ̃A)
σ̃2

σ2 =

(
1 +

cAτ̃
2
A

σ̃2

)
σ̃2

σ2 =

[
1 +

E(MSA) − E(MS∗e)
E(MS∗e)

]
×

E(MS∗e)
σ2 = 1 + κA + ϕ

2s1κB.

Substituting the above expressions, together with those for τ̃2
A and σ̃2, into (A5), and further

simplifying, one obtains (13).
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