
Running head: PARTIALLY NESTED EFFECT SIZE 1

Estimating Standardized Effect Sizes for Two- and Three-Level Partially Nested Data

Mark H. C. Lai

University of Cincinnati

Oi-man Kwok

Texas A&M University

Author Note

This is an Accepted Manuscript of an article published by Taylor & Francis in Structural

Equation Modeling: A Multidisciplinary Journal on 01/11/2016, available online:

https://www.tandfonline.com/10.1080/00273171.2016.1231606.

Mark H. C. Lai, School of Education, University of Cincinnati; Oi-man Kwok, Department

of Educational Psychology, Texas A&M University.

Correspondence concerning this article should be addressed to Mark Lai (Email:

mark.lai@uc.edu), School of Education, University of Cincinnati, Cincinnati, OH 45221-0022.

This article is based on part of the first author’s doctoral dissertation.



PARTIALLY NESTED EFFECT SIZE 2

Abstract

Although previous research has discussed an effect size estimator for partially nested cluster

randomized designs, the existing estimator (a) is not efficient when used with primary data, (b)

can be biased when the homogeneity of variance assumption is violated, and (c) has not yet been

empirically evaluated for its finite sample properties. The present paper addresses these

limitations by proposing an alternative maximum likelihood estimator for obtaining standardized

mean difference effect size and the corresponding sampling variance for partially nested data, as

well as the variants that do not make an assumption of homogeneity of variance. The typical

estimator, denoted as d (dW with pooled SD and dC with control arm SD), requires input of

summary statistics such as observed means, variances, and the intraclass correlation, and is useful

for meta-analyses and secondary data analyses; the newly proposed estimator δ̂ (δ̂W and δ̂C) takes

parameter estimates from a correctly specified multilevel model as input and is mainly of interest

to researchers doing primary research. The simulation results showed that the two methods (d and

δ̂) produced unbiased point and variance estimates for effect size. As expected, in general, δ̂ was

more efficient than d with unequal cluster sizes, especially with large average cluster size and

large intraclass correlation. Furthermore, under heterogeneous variances, δ̂ demonstrated a

greater relative efficiency with small sample size for the unclustered control arm. Real data

examples, one from a youth preventive program and one from an eating disorder intervention,

were used to demonstrate the methods presented. In addition, we extend the discussion to a

scenario with a three-level treatment arm and an unclustered control arm, and illustrate the

procedures for effect size estimation using a hypothetical example of multiple therapy groups of

clients clustered within therapists.

Keywords: Effect size, Partially nested, Partial clustering, Multilevel
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Estimating Standardized Effect Sizes for Two- and Three-Level Partially Nested Data

Effect size statistic is important in educational research and is the core concept in the

statistical reform in the behavioral sciences (Cumming, 2014; Kline, 2013; Wilkinson & Task

Force on Statistical Inference, 1999). Nevertheless, even though effect size reporting has become

more common for educational and behavioral studies (Peng, Chen, Chiang, & Chiang, 2013), to

date, researchers have rarely paid attention to the complicating issues for defining and estimating

standardized effect size for multilevel studies, and the discussion of effect size for complex

multilevel designs has mostly been missing.

This paper discusses effect size for a special but not uncommon multilevel design—the

partially nested design. Although Hedges and Citkowicz (2015) have proposed formulas for

estimating different effect sizes with two-level partially nested data, they only discussed effect size

estimation using summary statistics, and focused only on the special case where the variance

components at the lowest level are assumed to be homogeneous across the treatment and the

control arms. In this paper, we illustrate how to estimate sample effect size using maximum

likelihood (ML) when raw data are available, and show that these ML estimators are generally

more efficient than the one proposed by Hedges and Citkowicz (2015). In addition, we extend the

methods for estimating effect size to partially nested data with unequal variances across the

treatment and control arms, and evaluated the performances of our proposed methods through

simulation studies. Moreover, we extend the discussion of effect size to the design with a

three-level treatment arm and a one-level control arm.

Brief Review on Effect Size

In the past few decades effect size has gained increased attention in social science research.

For substantive researchers, effect size is crucial in the design phase for sample size planning in

order to achieve a desired level of precision of parameter estimates and statistical power (Kelley,

2013); in the analysis and interpretation phase it also gives a sense of the magnitude of a treatment

or an intervention (Ellis, 2010; Nakagawa & Cuthill, 2007). For meta-analysts, effect size is the
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building block of research that summarizes and synthesizes quantitative research findings for the

existing literature on a specific issue (Lipsey & Wilson, 2001). Given the importance of effect size

for quantitative research, both the American Educational Research Association (AERA; 2006) and

the American Psychological Association (APA; 2010) have explicitly recommended using effect

size statistics to interpret quantitative research findings.

Effect size measures are well-developed in single-level studies. For experimental or

quasi-experimental studies with two treatment groups, or arms, the term used in this paper to

avoid confusion with clusters, researchers commonly used standardized mean difference to

quantify the intervention effect in standard deviation unit. Synthesizing 32 reviews (from a total of

116 journals) about effect size reporting practices before 1999 and between 1999 and 2010, Peng

et al. (2013) found that the average effect size reporting rate increased from 29.6% before 1999 to

54.7% since 1999, and increased from 42.2% to about 72% for APA/AERA journals. Peng et al.

also found that standardized mean difference (in particular, Cohen’s d) was among the two most

commonly reported effect size statistic, alongside with the unadjusted R2—variance accounted for

effect size.

Multilevel Effect Size

Because of their ability to provide the strongest evidence for causal inference when properly

implemented, randomized experiments have long been regarded as the gold standard for the social

sciences (e.g., Campbell & Stanley, 1963). However, for the majority of research questions in the

social sciences, randomization on an individual basis is not always feasible. For example, in

studies of instructional intervention, most of the time it is impossible to assign students within the

same classroom to receive different instructions, so randomization may often occur at the

classroom, rather than individual level. Similarly, for a study of family therapies, it is not

reasonable to assign family members to receive different interventions given that family is the unit

for the intervention. In such studies where data have a naturally clustered structure, and ignoring

the clustering generally results in underestimated standard errors of treatment effects,
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undercoverage in confidence intervals, and inflated Type I error rates of statistical tests. Larger

degree of underestimation is associated with a larger intraclass correlation (ICC) and a larger

cluster size (as a function of the design effect, see Hox, 2010). For example, in a simulation study,

Wampold and Serlin (2000) showed that ignoring a nested factor of four providers each delivering

treatment to 10 patients inflated the true zero treatment effect, ω2 = 0, to a medium effect size,

ω̂2 = .067, on average. Multilevel modeling has long been suggested as a flexible technique that

accounts for the non-independence among observations and gives more accurate statistical

inferences (Goldstein, 1986; Mason, Wong, & Entwisle, 1983; Raudenbush & Bryk, 2002).

Although multilevel modeling has been studied in the methodological literature for decades,

only recently have researchers started to define and discuss effect size measures for

cluster-randomized studies. A review of the articles published in 2015 in three journals:

American Educational Research Journal, Journal of Consulting and Clinical Psychology, and

Journal of Educational Psychology identified 17 articles involving a cluster-randomized trial.

Although in 14 out of the 17 articles (82.3%) the authors reported at least a measure of

standardized effect size, and in eight articles (47.1%) Cohen’s d or a similar index was used, none

of the eight articles explicitly talked about issues in multilevel effect size or cited relevant

literature. Instead, all authors either simply adopted the definition of Cohen’s d in single-level

studies without any adjustment for clustering or fail to provide any information how they obtained

the effect size index in a multilevel context.

As discussed by Hedges (2007) and Hedges and Citkowicz (2015), the direct application of

single-level effect size formulas to multilevel data would lead to modest bias in the point estimate

but would severely underestimate the standard errors (SE) of the effect size. Hedges (2007)

presented a real data example wherein the estimated effect size for a connected mathematics

curriculum was very similar whether using formulas for single-level and for multilevel studies, but

where using the formulas for estimating the variance of single-level effect size would

underestimate the true variability by about 5.5 times. Given that the variability of effect size is to

be reported in primary studies (e.g. APA, 2010; Peng et al., 2013; Thompson, 2002) and that the
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variance estimate of sample effect size is commonly used in meta-analyses (Lipsey & Wilson,

2001), it is important to ensure that methods for estimating the variance of multilevel effect size

are available and correctly applied.

Our literature review shows that researchers recognized the need to report some sorts of

effect size measures for cluster randomized trials but were unaware of the issues of taking into

account the multilevel structure in computing effect size statistics, especially for standardized

mean differences. A potential reason for this finding is that formal discussion of the extension of

Cohen’s d-type effect size to multilevel context was not present until Hedges first formally

proposed them in 2007 for two-level cluster-randomized trials, followed by Hedges (2011) for

three-level trials, Lai and Kwok (2014) for cross-classified data, and Hedges and Citkowicz (2015)

for partially nested data (under the homogeneity of variance assumption). Also, there are still

disagreements on the most appropriate way to define multilevel effect size statistics (Peugh, 2010),

particularly on the choice of standardization (Hedges, 2007), as discussed below.

Partially Nested Design

Nevertheless, the clustered structure may not be the same in different treatment arms. In

some cases clustering is a product of the intervention, and the control arm is left ungrouped. For

example in the study by Compas et al. (2009) on children of depressed parents, the treatment arm

received family-based intervention, whereas the control arm was assigned to a self-study

condition. In another randomized trial, Kirschner, Paas, Kirschner, and Janssen (2011) compared

the effects of collaborative learning to the control arm of individual learning. Following the

previous literature we call such data structure partially nested (e.g., Bauer, Sterba, & Hallfors,

2008; Lohr, Schochet, & Sanders, 2014; Moerbeek & Wong, 2008; also called partially clustered

in Hedges & Citkowicz, 2015). Although research on methods dealing with such data can be

found early in Myers, DiCecco, and Lorch (1981) and later in Wehry and Algina (2003), reviews

of the existing literature shows that applied researchers seldom adopt appropriate analyses. For

example, Bauer et al. (2008) found that 32% of the randomized experiments during 2003 to 2005
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in four clinical research journals had a partially nested data structure, which was more common

than the fully nested design; however, none of them used the appropriate analyses. Similarly, in a

review of 34 articles in public health journals with an individually randomized trials where

clustering was created in the treatment arm, Pals et al. (2008) found only two articles using

analyses that took into account the clustering effect. Finally, Sanders (2011) noted that 13% of

experiments in educational research in 2007 to 2009 used partially nested data, and only two of

them used suitable analyses.

For partially nested data researchers either ignored the clustering in the treatment arm and

analyzed the data with the conventional t test or single-level regression, or created artificial

grouping for the control arm and analyzed the data with standard multilevel modeling. As pointed

out by Bauer et al. (2008), Korendijk (2012), and Sanders (2011), ignoring the clustering resulted

in underestimation of the standard errors of the treatment effect, whereas the use of artificial

grouping in the control arm resulted in biased estimates of the treatment effect and the variance

components when the within-cluster variance in the treatment arm is different from the control

arm variance (i.e., with heterogeneous variance). Although the impact of ignoring clustering in

partially nested design is smaller than in fully nested design, with the typical ICC of .22 in

education (Hedges & Hedberg, 2007) and a cluster size of 20 in the treatment arm, ignoring

clustering still leads to an underestimation of the variance of the sample effect size by two times.

Hedges and Citkowicz (2015) discussed one effect size estimation approach for two-level

partially nested data, but their approach does not correspond to maximum likelihood estimation,

which is more efficient with unbalanced cluster sizes, and can produce biased estimates when the

homogeneity of variance assumption is violated. In the following sections, we introduce the

notations for two-level partially nested designs and discuss two approaches to estimating effect

size and obtaining confidence intervals (CIs) for partially nested data: d (dW with pooled SD, and

dC with control arm SD), which is useful for meta-analysts, and δ̂ (δ̂W and δ̂C), which is useful for

researchers conducting primary research. We also report on two simulation studies carried out to

evaluate the performances of the four estimators as well as the accuracy of the variance estimates.
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In addition, demonstrations are given for computing point and interval estimates for effect size

using two real data examples. Finally, we extend the discussion of effect size estimation to

three-level partially nested designs.

Effect Size Estimation for Two-Level Partially Nested Design

Model and Notations

Let us consider the situation outlined in Bauer et al. (2008), where participants were

randomly assigned to either the treatment or the control arms on an individual basis. Those in the

treatment arm were assigned to subgroups and received the treatment, but those in the control arm

formed no clustering structure. Let YT
i j (i = 1, . . . , n j ; j = 1, . . . ,m) be the scores of the outcome Y

for the ith observation in the jth cluster of the treatment arm, and YC
i (i = 1, . . . , NC) be the

outcome for the ith observation in the control arm, so that there are m clusters in the treatment arm

and n j observations in the jth cluster. Denote the sample size of the treatment arm and of the

control arm as NT =
∑m

j=1 n j and NC , with the total sample size N = NT + NC . In a balanced

design, n1 = . . . = n j = n and so NT = mn. The control arm is not clustered, so there is no j

subscript.

Myers et al. (1981) proposed a pseudogroup and a quasi-F approach to analyzing such data.

With the development of multilevel modeling, a model predicting the response variable Yi j can

then be conceptualized by the level-1 model (Bauer et al., 2008)

Yi j = β0 j + β1 j(TREATi j) + εi j, (1)

and the level-2 model

β0 j = γ00, (2)

β1 j = γ10 + u1 j, (3)



PARTIALLY NESTED EFFECT SIZE 9

where TREAT is a dummy variable coded as 1 = treatment arm and 0 = control arm. Thus, for the

treatment arm there are the level-2 random effect, u1 j , and the level-1 error term, εi j , whereas for

the control arm there is only the error term εi j . Here β0 j is the within-cluster regression intercept

for cluster j, which is assumed to remain constant across clusters and equals γ00, the population

mean of the control arm. The random slope, β1 j , denotes the difference between the mean of the

jth cluster in the treatment arm and the control arm mean, µC; under a balanced design its mean

across all js is γ10, which can be unbiasedly estimated by the difference between the sample

means, ȲT
.. − ȲC . The cluster-specific random effect is captured by u1 j with V(u1 j) = σ

2
B. The

level-1 error term is, εi j , and without assuming homogeneity of variance we have

V(εi j |TREAT = 0) = σ2
C for the control arm and V(εi j |TREAT = 1) = σ2

W |T for the treatment arm.

When the clustering involves random assignment and the treatment effect does not change the

within-cluster variability, it is reasonable to assume constant variance across both the treatment

and the control arms, so that σ2
W |T = σ

2
C = σ

2
W (Bauer et al., 2008). The error terms u1 j and εi j

both have an expected value of zero and are independent, and in general we assume that they both

follow a normal distribution. Note that the sum of the variance components within the treatment

arm is σ2
W |T + σ

2
B, whereas that within the control arm has only one component, σ2

C . Thus, the

variances of two arms differ, unless σ2
B = 0. Let us define the ICC for the treatment arm as ρ,

where

ρ =
σ2

B

σ2
W |T + σ

2
B

. (4)

Such a model can easily be analyzed using common statistical packages for multilevel

modeling; indeed, Bauer et al. (2008) provided codes for fitting such a model in SPSS and SAS. In

a simulation study, Sanders (2011) showed that Bauer et al.’s use of a fixed intercept and a random

treatment effect is better than treating the intercept as random with a fixed treatment effect, an

approach found to have inflated Type I error rate (Wehry & Algina, 2003). In another simulation

study, Baldwin, Bauer, Stice, and Rohde (2011) further showed that Bauer et al.’s partially

clustered multilevel models produced unbiased and efficient parameter estimates while keeping

the Type I error rate at nominal level (see also Talley, 2013). Finally, Sterba et al. (2014) showed
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that the above model can be reparameterized and analyzed using structural equation modeling

(SEM) software.

Effect Size Estimations

In treatment-control arm studies, the most common effect size statistic is the standardized

mean difference (Cohen, 1988; Hedges, 1981),

δ =
µT − µC

σ
, (5)

where µT and µC are the population means of the treatment and of the control arm respectively

and σ is the pooled within-arm standard deviation.

Choice of standard deviation. Hedges (2007) and Hedges and Citkowicz (2015) noted

that with multilevel data, the concept of effect size is vague. That is because σ can be defined as

σW (with homoscedasticity assumed, i.e., σ2
W |T = σ

2
C), σB, or

√
σ2

W + σ
2
B, each with a different

target of generalization. If homoscedasticity is not assumed, we have two additional choices of σC

and
√
σ2

W |T + σ
2
B. The choice generally depends on which SD is more natural in the population.

For example, if the population is naturally unclustered and the treatment is considered artificially

created, σW is to be preferred in defining the population effect size; Hedges and Citkowicz (2015)

provided expressions for the point and variance estimates of effect size using that definition (dW in

their paper, which we subsequently denoted as dWHC to distinguish it from dW that we propose in

this paper). Research studies with a partially nested design usually fall into this category (see also

Heo, Litwin, Blackstock, Kim, & Arnsten, 2014; Lohr et al., 2014). On the other hand, if the

clustered condition is an established norm (e.g., students in classrooms) and the researcher is

interested in an individually (i.e., unclustered) implemented intervention (e.g., homeschooling),√
σ2

W + σ
2
B is preferable in defining the population effect size. In this case, it may be more intuitive

to think of the arm with the clustered intervention as the control and the one with the individually

administered intervention as the treatment. For partially nested data such as the example given in

Bauer et al. (2008), because the clustering is artificially created in the treatment arm and does not
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naturally occur in the general population, σW would be a better denominator for effect size.

Therefore, the present study only discusses standardized effect size using σW as the denominator,

which is analogous to Cohen’s d with homogeneous variance (and is analogous to Glass’s [1976]

effect size when using only the control arm SD).

Assuming Homogeneity of Variance

Let ȲT
.. and ȲC be the grand means of the treatment arm and of the control arm, respectively,

and ȲT
. j the mean of the jth cluster in the treatment arm. First, we define the within-cluster

variance of the treatment arm and the variance of the control arm as

S2
W |T =

m∑
j=1

nj∑
i=1

(
YT

i j − ȲT
. j

)2

NT − m
, (6)

S2
C =

NC∑
i=1

(
YC

i − ȲC )2

NC − 1
. (7)

When the within-cluster variance in the treatment arm equals the variance of the control

arm at the population (i.e., σ2
W |T = σ

2
C), a situation discussed in Bauer et al. (2008), we can let S2

W

be the pooled within-cluster level variance such that

S2
W =
(NT − m)S2

W |T + (N
C − 1)S2

C

N − m − 1
, (8)

and let S2
B|T be the between-cluster mean squares in the treatment arm, where

S2
B |T =

m∑
j=1

n j

(
ȲT
. j − ȲT

..

)2

m − 1
. (9)

We first consider situations where equal within-treatment arm variance holds, and then consider

the case when heteroscedasticity is present (see also Moerbeek & Wong, 2008).

We first consider estimating the population effect size under homogeneous variance with
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σ2
W |T = σ

2
C = σ

2
W , where the population effect size is defined as δW = γ10/σW , a situation studied

in Hedges and Citkowicz (2015) (although they define effect size using only the control arm SD).

We then consider effect size estimation under heterogeneous variance with σ2
W |T , σ

2
C . Next we

present two approaches, namely, dW and dC (with the use of summary statistics) and δ̂W and δ̂C

(with the use of maximum likelihood estimates), to estimate population effect size from a sample

of partially nested data.1

Using summary statistics. The materials in this section are similar to Hedges and

Citkowicz (2015) with minor differences in notations. Using summary statistics, the sample effect

size is

dW =
ȲT
.. − ȲC

SW
, (10)

and

V(dW ) =
1 + (ñ − 1)ρ
NT (1 − ρ)

+
1

NC +
d2

W

2(N − m − 1)
, (11)

where SW is as defined in (8) and ñ =
∑m

j=1 n2
j/N

T , which reduces to n under a balanced design.

The formulas for d and V(dW ) assume that the population ICC, ρ, is known, but we can plug in a

sensible estimate based on theory or replace it by a moment estimator

(S2
B|T − S2

W )/[S
2
B |T + (nU − 1)S2

W ] where nU = (NT − ñ)/(m − 1). The derivation of (10) and (11)

may be found in the Appendix. Note that for unbalanced designs, the grand mean is no longer an

efficient estimator of the mean of the control arm, so dW is not the most efficient estimator for δW

(i.e., variance of dW is larger than the second method described below).

Using maximum likelihood estimation. If consistent estimates of γ10 (fixed effect) and

σW (random effect) and their associated variance estimates (or standard error estimates) are

accessible, we can use the following equations based on the estimated variance components (see
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the Appendix for derivation)

δ̂W =
γ̂10
σ̂W
, (12)

V(δ̂W ) =
V(γ̂10)

σ̂2
W

+
δ̂2

WV(σ̂2
W )

4σ̂4
W

. (13)

If the maximum likelihood or restricted maximum likelihood estimates of γ̂10 and σ̂W are

available, which are asymptotically unbiased, consistent (i.e., converged to the population value),

and efficient (i.e., with minimum variance) under general conditions, then by the invariance

property of the maximum likelihood (Casella & Berger, 2002) δ̂W is also the maximum likelihood

estimate of δW and is asymptotically unbiased, consistent, and efficient, even for conditions with

unbalanced data. Thus, when relevant information is available, δ̂W is a better estimator than dW .

Using Only the SD of the Control Arm

For single-level studies, Glass (1976) suggested computing the effect size using only the

standard deviation of the control arm if there is evidence or reason to believe that the treatment

changes the variance of the score distribution. Similarly, in partially nested design, the

within-cluster variance, σW , may be affected by the treatment. In this case, we agree with Glass

(1976) that the control arm SD would be a more natural choice for standardization as it represents

the variability of the general population without intervention. Therefore, we define the population

effect size δC as

δC =
µT − µC

σC , (14)

where σC is the population SD of the control arm2. Bauer et al. (2008) also discussed a model

with σ2
C , σ

2
W |T and provided SPSS and SAS code for fitting partially nested models with

heterogeneous variance.

When σ2
C is not equal to σ2

W |T , δC , δW , as they have different denominators. Consider a

hypothetical example with NT = NC = 100 and m = 20 with a equal cluster sizes in the treatment

arm. Assume a medium effect size at the population level such that δC = 0.5. If the level-1
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variance of the treatment arm is only half of the control arm variance such that σ2
W |T = 0.5σ2

C ,

using equation (8) the pooled variance is expected to be

[(100 − 20)0.5σ2
C + (100 − 1)σ2

C]/(200 − 20 − 1) = 0.78σ2
C . Thus, the pooled SD is

√
0.78 = 0.88

times the control arm SD. As a result, when we estimate δC = 0.5 using the pooled SD with this

example, we expect to obtain a value that is 1/0.88 = 1.13 times the true δC , or .57. It is obvious

from (8) that the pooled SD is smaller than the control arm SD (i.e., overestimated effect size)

when σ2
W |T < σ

2
C , and the pooled SD is larger than the control arm SD (i.e., underestimated effect

size) when σ2
W |T > σ

2
C . It should also be clear that using the pooled SD gives a more biased

estimate of δC when NT − m is large relative to NC .

Using summary statistics. A sample estimator of δC , dC can be obtained as

dC =
ȲT
.. − ȲC

SC
, (15)

V(dC) = υ
1 + (ñ − 1)ρ
NT (1 − ρ)

+
1

NC +
(dC)

2

2(NC − 1)
, (16)

where SC has been defined in equation (7) and υ = σ2
W |T/σ

2
C is the variance ratio between the

treatment and the control arms, which can be estimated as

υ̂ =
NC − 1
NC − 3

S2
W |T

S2
C

.

The sample estimator υ̂ is unbiased when the cluster sizes are balanced as the factor

(NC − 1)/(NC − 3) corrects for the bias in the F-ratio S2
W |T/S

2
C . Note that V(dC) > V(dW ) when

υ = 1, so dW is preferred when variance can be assumed equal. Also note that even though dC

shares some similarity to dWHC proposed by Hedges and Citkowicz (2015, p. 1299; also denoted

as dW in their paper), our current estimator does not require the homogeneity of variance

assumption whereas theirs assumes that the homogeneity of variance assumption holds.

Using maximum likelihood estimation. If reasonable point and variance estimates for

γ10 and σ2
C can be obtained, δC and its sampling variance can be estimated by plugging in the
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maximum likelihood estimates:

δ̂C =
γ̂10
σ̂C
, (17)

V(δ̂C) =
V(γ̂10)

σ̂2
C

+
(δ̂C)

2V(σ̂2
C)

4σ̂4
C

. (18)

Choosing between the control arm SD and the pooled SD. Whereas the use of the

pooled SD can produce inconsistent effect size estimate, the use of the control arm SD is

consistent without assuming homogeneity of variance, and should be a more defensible option

when strong evidence of the equality between σ2
W |T and σ2

C is not present. On the other hand, by

comparing expressions (11) and (16), it is obvious that, when the homogeneity assumption holds

such that δW = δC , dW (and δ̂W ) is also a consistent but more efficient estimator of the population

effect size than dC (and δ̂C), especially when NT and NC are small and the effect size is large.

Therefore, when the total sample size is small, if the pooled sample SD, SW , has a similar value as

the control arm SD, SC , using the pooled SD provides a more precise effect size estimate.

Although we can test the homogeneity of variance hypothesis (H0: σ2
W |T = σ

2
C) by comparing

nested multilevel models with a likelihood ratio test, the power to detect violation of such

homogeneity is not known. As the homogeneity of variance assumption is more restrictive, we

recommend using dC rather than dW (and δ̂C over δ̂W ) unless there are strong evidence or a strong

rationale for imposing the homogeneity of variance assumption.

Constructing Approximate Confidence Intervals for Sample Effect Size Estimates

Like any other point estimates such as the sample mean, sample effect size estimates

provide absolutely no information about the uncertainty in the estimated effect size. Numerous

authors have commented on the importance of reporting CI for effect size (e.g., Cumming, 2014;

Grissom & Kim, 2012; Hedges, 2008; Peng et al., 2013; Thompson, 2002), and both the AERA

(2006) and the APA (2010) strongly encourage reporting CI along with an effect size estimate.

Let δ̃ be one of the sample effect size estimator discussed in this paper (i.e., δ̃ = dW, dC , δ̂W ,
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or δ̂C). Based on the central limit theorem (cf. Casella & Berger, 2002), δ̃ will be consistent and

normally distributed with a large sample size. Therefore, an approximate (1 − α) × 100% CI for δ̃

may be obtained as

[δ̃ − z1−α/2SE(δ̃), δ̃ + z1−α/2SE(δ̃)], (19)

where z1−α/2 is the (1 − α/2) quantile in the standard normal distribution. For example, for the

commonly reported 95% CI, one uses z.975 ≈ 1.96. Also, in practice SE(δ̃) =
√

V(δ̃) has to be

estimated from the sample using equation (11) for dW , (13) for δ̂W , (16) for dC , and (17) for δ̂C .

Simulation to Evaluate the Performance of dW , dC , δ̂W , and δ̂C

A simulation study was used to evaluate the performance of dW , δ̂W , dC , and δ̂C , and their

analytically derived variances for two-level partially nested design. The design factors of the

simulation were as follows: population effect size (δ = .2, .5, .8), ICC (ρ = .1, .25, .5), number of

clusters in the treatment arm (m = 10, 30, 100), average cluster size (n̄ = 5, 10, 25, 50), degree of

unbalanced cluster sizes (ñ:n̄ = 1, 1.64), sample size ratio between the two arms (NT :NC = 1, 5),

and the variance ratio of the level-1 error terms between the two arms (υ = σ2
W |T/σ

2
C = .5, 1, 2).

For each of the 1,296 simulation conditions, 2,000 data sets were generated in R (R Core Team,

2015) using the model defined in equations (1) to (3), with σC fixed to one (and larger ICC

corresponding to larger σ2
B. The effect size estimates dW and dC and their variances were easily

obtained in R using equations (10), (11), (15), and (16), whereas for δ̂W and δ̂C we obtained the

estimated variance components using the R packages lme4 (Bates, Mächler, Bolker, & Walker,

2015) and nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2015), respectively.

Because the methods were derived analytically, the purpose of the simulation was mainly to

determine how robust the analytical results were under the extreme conditions of small cluster

size, unbalanced cluster sizes, and small number of clusters. Therefore, we do not present every

detail of the simulation study here (the tables of the full simulation results may be obtained from

the first author). For each condition, we considered the point estimate to have unacceptable bias

when the absolute value of the standardized bias was larger than .40 (Collins, Schafer, & Kam,
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2001). In turn, we considered the variance (or standard error) estimate to have unacceptable bias

when the absolute value of the relative SE bias was larger than .10 (Hoogland & Boomsma, 1998).

Finally, with unbalanced cluster sizes, dW and dC were expected to be inefficient, meaning that

they had a larger sampling variance. Therefore, we also computed the relative efficiency of δ̂W

relative to dW , RE(δ̂W, dW ) = MSE(dW )/MSE(δ̂W ) (and similarly for RE[δ̂C, dC]), as the ratio of

their mean squared errors (MSE; i.e., squared bias plus sampling variance). If RE(δ̂W, dW ) > 1,

δ̂W is more efficient than dW .

Simulation Results. Figure 1 shows the standardized biases of dW and δ̂W when the

homogeneity assumption is met (i.e., υ = 1) and those of dC and δ̂C for all conditions. As

illustrated, all four estimators showed little bias in the point estimates except for the combination

of m = 10 and n̄ = 5, but even under such conditions with small sample sizes the standardized

biases were mostly under 20%, well within the acceptable range suggested by Collins et al. (2001).

Figure 2 shows the relative SE biases with respect to the four effect size estimators. As illustrated,

the relative SE biases were generally within 10% in absolute values except for δ̂W and δ̂C for a few

conditions with m = 10, n̄ = 5, and unbalanced cluster sizes. In summary, the standardized biases

and the relative SE biases for all four estimators were generally small, confirming the adequacy of

the analytical results even for extreme conditions. Note that Baldwin et al. (2011) found that both

the fixed effects and the variance components were unbiasedly recovered using the correctly

specified partially nested model, so our results were consistent with theirs.

The relative efficiency of the maximum likelihood estimator to using summary statistics was

found to depend mainly on the imbalance of the cluster sizes, ICC, and average cluster size. As

shown in Figure 3, when the design was balanced (i.e., ñ = n̄), the relative efficiency was very

close to 1.00, as δ̂ was generally identical to dW and δ̂C was generally identical to dC except when

the estimated ICC was at the boundary. On the other hand, when cluster sizes were not all the

same, δ̂W became more efficient with a larger ICC and a larger n̄, and when n̄ = 50 and ρ = .5, δ̂W

were 1.4 to 1.6 times more efficient than dW , meaning that the sampling variance of dW was 1.4 to

1.6 times bigger than that of δ̂W . The results were generally similar for δ̂C and dC .
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Real Data Illustration

Example 1. The summary of the multilevel analysis provided in Model 1 of Bauer et al.

(2008, p. 231) was used to demonstrate the usage of equations (12) and (13) for effect size

estimation. The data concerned the effectiveness of the Reconnecting Youth (RY) preventive

intervention program, which involved participants in 9th- to 11th-grade from five schools in the

Southwest and four schools on the Pacific coast in the United States (see Cho, Hallfors, &

Sánchez, 2005, for more information of the sample and the study). A total of 1,370 students at

high risk of dropout, drug use, and emotional distress were randomly assigned to eitherthe

intervention or the control arm. In the intervention arm, or the RY arm, only NT = 370 out of 695

students were retained. These students were grouped into 41 classes to receive a one-semester

curriculum with the intention of developing skills and a supporting group environment. On the

other hand, students in the control arm (NC = 675) were not specifically grouped. There was also

a comparison group of low-risk students called the typical arm, but for this illustration we only

focus on the comparison of the RY and the control arm.

Results showed that grouping high-risk students resulted in some negative outcomes in the

posttest after six months—the outcome variable of interest here was deviant peer bonding. The

fixed effects included dummy variables representing the memberships of the RY arm and of the

control arm, as well as those representing the schools the students attended. The two random

components were the person-level residual variance (which was assumed to be constant across

arms) and the class-level residual variance.

The treatment effect of RY compared to control had a coefficient γ̂10 = 0.19, t(68.3) = 2.63

on deviant peer bonding, with σ̂2
W = 0.789, z = 26.73, and σ̂2

B = 0.053. Using equation (12), it is

clear that the effect size of RY was δ̂W = 0.19/
√

0.789 = 0.214. To estimate SE(δ̂W ), we need SEs

of γ̂10 and of σ̂2
W , which Bauer et al. (2008) did not directly report. However, using the values of

the test statistics, we could estimate the SE of the effect of RY as 0.19/2.63 = 0.0722 and that of

σ2
W as 0.789/26.73 = 0.0295. Substituting V(γ̂10) = 0.07222, δ̂ = 0.214, σ̂2

W = 0.789, and

V(σ̂2
W ) = 0.02952 into equation (13)for V(δ̂W ) , we got
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0.07222/0.789 + (0.2142)(0.02952)/(4 × 0.7892) = 0.0066 (or SE = 0.0814). The approximate

95% symmetric CI for the sample effect size could be obtained as 0.214 ± z.025(0.0814), which

equals [0.054, 0.374]. Therefore, we found that RY had a small but nonzero effect of increasing

deviant peer bonding for high-risk students.

If the parameter estimates for the correctly specified multilevel model are not available, we

can still estimate the effect size d by using some estimates or representative values of the ICC, ρ.

If we substituted ρ̂ = σ̂2
B/(σ̂

2
B + σ̂

2
W ) = 0.063 to equation (12) and (13) and assume SW to be the

same as σ̂W and ȲT
... − ȲC = γ̂10, we would get the same estimate dW = δ̂W = 0.214 and a smaller

estimated SE of 0.076, assuming an equal cluster size of 9.02. As Bauer et al. (2008) noted that

there were 5 to 15 students in each intervention group, a more conservative estimate of SE(dW )

would be obtained by using ñ = 1.5n̄ = 13.53, resulting in an estimated SE of 0.0816, much closer

to the estimate obtained by maximum likelihood. If we were to use the variance formulas in

Hedges and Citkowicz (2015) for dW , we would get SE = 0.0817, which is slightly larger than

SE(dW ) found using equation (13) in this paper, as Hedges and Citkowicz only used the SD for the

control arm while assuming homoscedasticity. Finally, if the formulas for single-level effect size

were used, we would get SEnaive(d) =
√

1/370 + 1/675 + 0.2142/[2(370 + 675 − 2)] = 0.065, an

underestimation of the SE taking into account the clustering by slightly more than 20%.

Example 2. We illustrate the estimation of δC using the summary from Baldwin et al.

(2011), a re-analysis of the data from Stice, Shaw, Burton, and Wade (2006). The data are from a

dissonance-based eating disorder prevention intervention for 480 female adolescents in four

intervention arms: dissonance intervention, healthy-weight management, expressive writing, and

assessment-only control. The dissonance intervention arm showed the biggest decrease in

thin-ideal internalization (TII) compared to the assessment-only control arm, so in this illustration

we only use results pertaining to these two arms. In the intervention arm, NT = 114 adolescents in

17 clusters (n̄ = 6.7), whereas in the baseline arm NC = 126 unclustered participants. Using a

likelihood ratio test Baldwin et al. found that the heterogeneous variance model fitted the data

better than a homogeneous variance model, so we use the estimates from the heterogeneous
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variance model to estimate the effect size for the dissonance intervention on TII.

The treatment effect had a coefficient of −0.44, t(23.2) = −5.51 on deviant peer bonding,

with σ2
W |T = 0.34, z = 6.84, σ2

C = 0.20, z = 7.87, and σ2
B = 0.03. Using equation (17), it is clear

that the effect size of dissonance intervention was δ̂C = −0.44/
√

0.20 = −0.98. To estimate

SE(δ̂C), we need SEs of γ̂10 and of σ̂2
W |T , which Baldwin et al. (2011) did not directly report.

Again, using the values of the test statistics, we could estimate the SE of the effect of RY as

−0.44/−5.51 = 0.080 and that of σ̂2
W |T as 0.20/7.87 = 0.0254. Substituting V(γ̂10) = 0.0802,

δ̂C = −0.98, σ̂2
W = 0.20, and V(σ̂2

W ) = 0.02542 into the formula for V(δ̂C), that is, equation (18),

we got 0.0802/0.20 + (−0.98)2(0.02542)/(4 × 0.202) = 0.0358 (or SE = 0.189). Then the

approximate 95% symmetric CI could be obtained as −0.98 ± z.025(0.189) , which equals

[−1.355,−0.613]. Therefore, we found that the dissonance intervention had a large effect on

reducing TII.

If instead we assumed homogeneity of variance with an estimated treatment effect of −0.44,

t(28.6) = −5.25 and σ̂2
W = 0.27, z = 14.88, we would get an estimated effect size δ̂W = −0.85,

with SE = 0.164 and 95% symmetric CI of [−1.168,−0.528], and thus an underestimated effect

size as compared to δ̂C .

Efficiency Lost of dC and δ̂C When Homogeneity of Variance Holds

Although dC and δ̂C are preferable to dW and δ̂W in the sense that the former two do not

make the assumption of homogeneity of variance, they are less efficient estimators when

homogeneity of variance holds. Comparing equations (11) and (16), we see that the loss of

efficiency in dC may be attributed to the replacement of N − m − 1 by NC − 1 in the denominator

of the last term and the noise introduced in computing the sample variance ratio υ. To pinpoint the

efficiency lost in dC and δ̂C , we computed the relative efficiencies RE(dC, dW ) and RE(δ̂C, δ̂W )

using the data in Simulation 1. ANOVA results showed that there were essentially no difference

between RE(dC, dW ) and RE(δ̂C, δ̂W ) (with η2 = .0008 for all its main and interaction effects). The

major factors influencing relative efficiency was the main effect of NT :NC (η2 = .31), followed by
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the main effects of average cluster size n̄ (η2 = .14), number of clusters J (η2 = .11), and

population effect size δ (η2 = .09). As shown in Table 1, dC was almost as efficient (RE = 0.95 to

1.0) as dW when NT :NC = 1. When the control arm sample size NC is small relative to NT , dC is

less efficient, especially when J and n̄ are small and δ was large. For example, when m = 10,

n̄ = 5, and δ = 0.8, the relative efficiency was only 0.66; if δ was changed to 0.2, the relative

efficiency would increase to 0.79; if, in addition, n̄ was changed to 25, the relative efficiency

would increase to 0.95; and when m ≥ 30, n̄ = 25, and δ = 0.2, the relative efficiency was 0.99, in

which case, dC was almost as efficient as dW .

Three-Level Experimental Arm

The previous discussion represents a relatively simple two-level partially nested scenario. In

real data, the research design can be extended in multiple ways, such as having more than two

clustering levels or including multiple treatment conditions. In this paper, we extend the

discussion of effect size to a scenario where the treatment arm follows a three-level hierarchical

structure and the control arm is unclustered, which we denote as a 3T1C design. We chose to

discuss this design as it has been mentioned in several previous studies (Heo et al., 2014; Lohr et

al., 2014; Sterba, 2015), and is a natural extension of the two-level partially nested design. An

example was given in Sterba (2015) where, in the treatment arm, there were multiple therapists

each managing several therapy groups of clients, whereas the control arm consisted of wait-list

clients who were unclustered. Therefore, the treatment arm had a three-level structure but the

control arm had only one level; the research question was to evaluate the effectiveness of therapy

groups.

Model and Notations

Consider a design with a three-level treatment arm and a one-level control arm. In the

treatment arm, there are m therapists indexed by k = 1, . . . ,m, where the kth therapist is in charge

of pk therapy groups, indexed by j = 1, . . . , pk . The jth therapy group for the kth therapist

consists of n j k clients, indexed by i = 1, . . . , n j k . Let NT be the number of clients such that



PARTIALLY NESTED EFFECT SIZE 22

NT =
∑m

k=1
∑p

j=1 n j k . The control arm, on the other hand, consists of NC unclustered wait-list

clients. A model for this design may be formulated as

Yi j k = γ000 + γ100(TREATi j k) + r1 j k(TREATi j k) + u10k(TREATi j k) + εi j k, (20)

where TREAT is a dummy variable coded as 1 = treatment arm and 0 = control arm, γ000 is the

grand mean for the control arm, and γ100 denotes the average treatment effect. The random effect

term r1 j k is the clustering effect of therapy group j of therapist k, u10k is the level-3 effect of the

kth therapist, and εi j k is the level-1 error term for individual i in therapy group j of therapist k.

For a balanced design, i = 1, . . . n, j = 1, . . . , p, and k = 1, . . . ,m for the treatment arm and

i = 1, . . . , NC for the control arm. It is assumed that, for the treatment arm, εi j k ∼ N(0, σ2
W |T ),

r1 j k ∼ N(0, σ2
2), and u10k ∼ N(0, σ2

3), and, for the control arm, εi j k ∼ N(0, σ2
C).

For the above model, we can impose the equality constraint σ2
W |T = σ

2
C = σ

2
W . Under this

homogeneity assumption, the population effect size may be defined as δW = γ100/σ
2
W . Let us

define the pooled level-1 sample variance as

S2
W =

∑m
k=1

∑pk
j=1

∑njk

i=1(Yi j k − ȲT
...) +

∑NC

i=1(Yi − ȲC)

N − P − 1
,

where N = NT + NC is the overall sample size and P =
∑m

k=1 pk is the total number of level-2

units. Under a balanced design P = mp. An unbiased estimator for the population effect size is

dW =
ȲT
... − ȲC

SW
(21)

and, under a balanced design, its approximate sampling variance is

V(dW ) =
1 + (n − 1)ρ2 + (n2 − 1)ρ3

NT (1 − ρ2 − ρ3)
+

1
NC +

d2

2(N − P − 1)
, (22)

where ρ2 = σ
2
2/(σ

2
W + σ

2
2 + σ

2
3) and ρ3 = σ

2
3/(σ

2
W + σ

2
2 + σ

2
3) are the ICCs for level 2 and level 3,

respectively, for the treatment arm, and n2 = pn is the number of level-1 units in each level-3
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cluster.

If the homogeneity of variance assumption is not imposed, it is more natural to estimate the

population effect size δC = γ100/σC . The sample effect size estimator and its sampling variance

are

dC =
ȲT
... − ȲC

SC
, (23)

and

V(dC) = υ
1 + (n − 1)ρ2 + (n2 − 1)ρ3

NT (1 − ρ2 − ρ3)
+

1
NC +

(dC)
2

2(NC − 1)
. (24)

As suggested in Hedges and Citkowicz (2015), we can plug in the ICCs, ρ2 and ρ3, with some

reasonable estimates based on the literature or on substantive knowledge. Alternatively, we can

obtain the method of moment estimates using the equations given in Searle, Casella, and

McCulloch (2006, p. 429).

Unequal cluster sizes. With unequal cluster sizes in the treatment arm at level 1 (i.e.,

n j k , n j ′k ′ for some j , j′ and k , k′) and/or level 2 (i.e., pk , pk ′ for some k , k′), we can

replace n2 in equations (21) to (24) by

ñ2 =
1

NT

m∑
k=1

©­«
pk∑
j=1

n j k
ª®¬

2

and replace n by

ñ =
1

NT

m∑
k=1

pk∑
j=1

n2
j k .

On the other hand, if maximum likelihood estimates and the corresponding sampling variances of

the treatment effect γ̂100 and of the pooled within-cluster SD, σ̂W , are available, we can plug in the

MLEs similar to equations (12) and (13) to obtain the MLE of the population effect size

δ̂W =
γ̂100
σ̂W
,

V(δ̂W ) =
V(γ̂100)

σ̂2
W

+
δ̂2

WV(σ̂2
W )

4σ̂4
W

.
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If homogeneity of variance is not assumed, we can instead plug in the MLE for the control arm

SD, σ̂C , in the place of σ̂W , and estimate effect size using the above equations.

Simulation to Evaluate the Performance of the Estimators in the 3T1C Design

We also evaluated the performance of the four effect size estimators for the 3T1C design

using simulation. However, as shown in the results for the two-level partially nested design, the

effect size estimators generally performed as expected except for conditions with high ICC, small

number of clusters, small and unbalanced cluster sizes. Therefore, it is sufficient to evaluate the

performance of the four estimators using some extreme conditions. For the 3T1C design, we used

a smaller scale of simulation conditions with m = 10, p̄ (average number of level-2 units in a

level-3 cluster) = 10, n̄ = 5 or 50, ρ3 = .1, .25, .5, ρ2 = .1, .2, δ = .2, .5, .8, NT :NC = 1, 5, and

υ = .5, 1, 2. The clusters at level 2 are unbalanced such that half of the clusters have size

9p̄/5 = 18 and the other half have size p̄/5 = 2. Similarly, half of the clusters at level 1 have size

9n̄/5 and the other half have size n̄/5. For each simulation condition, we evaluated the

standardized bias and relative SE bias for each effect size estimator using 2,000 replications.

The simulation results for the 3T1C design are shown in Figure 4 (for standardized biases)

and Figure 5 (for relative SE biases). We evaluated dW and δ̂W only for the conditions with υ = 1.

For those conditions, the standardized biases were all smaller than .10 in absolute values, and the

relative SE biases were all smaller than .05 in absolute values. Therefore, when the homogeneity

assumption was met, the performance of dW and δ̂W and their variance estimators was very good

even with small sample sizes, unbalanced cluster sizes, and high ICC. We evaluated dC and δ̂C

with respect to all three values of υ. For all conditions, the standardized biases were smaller than

the cut-off of .40, but for four conditions (with n̄ = 5, ρ3 = .1, δC = 0.8, NT :NC = 5, and υ = .5 or

1) both dC and δ̂C were slightly more biased, with standardized biases between .20 to and .21.

Similarly, the SE estimates for dC and δ̂C were unbiased for all conditions with relative SE bias

< .10 in absolute values, except for six conditions with n̄ = 5, ρ3 = .5, NT :NC = 5, υ = 2 where

the relative SE biases for dC were between 12.3% to 13.2%.
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Illustration Using Simulated Data

Sterba (2015) provided a simulated data example to demonstrate the estimation of various

partially nested design. Based on the results of Table II (p. 2) of that paper, we simulated a data set

with normally distributed random effects and level-1 error term for a three-level treatment arm and

a one-level control arm design. Our hypothetical research question was to estimate the treatment

effect of therapy groups in reducing depression. In the treatment arm, nine therapists each lead

five therapy groups, each consisting of five patients. Therefore, there were 9 × 5 × 5 = 225

patients in the treatment arm. The control arm consisted of 45 patients on the wait-list, who were

unclustered. Using the lme4 package in R, we estimated that the unstandardized treatment effect

was γ̂100 = −1.788, SE = 0.252. If the homogeneity assumption was assumed, the estimated

pooled level-1 variance component was σ̂2
W = 1.466 (SE = 0.139), σ̂2

2 = 0.188, σ̂2
3 = 0.148. Using

maximum likelihood, we can obtain δ̂W = −1.477, SE = 0.219, and 95% CI [−1.91,−1.05].

Therefore, we can be 95% confident that the group-based treatment reduced the depression

outcome by 1.05 to 1.91 standard deviations compared to the wait-list patients.

If only summary statistics are available with a mean difference between the treatment arm

and the control arm of −1.788, the pooled level-1 SD of 1.211, the estimated ICCs of .105 at level

3 (i.e., therapists) and .084 at level 2 (i.e., therapy groups), we can use equations (21) and (22) to

obtain dW = −1.477, SE = 0.220. Because of the equal cluster sizes at both level 1 and level 2, the

two estimators dW and δ̂W are theoretically identical except for some samples where the estimated

ICCs using summary statistics are negative but the maximum likelihood estimates of the ICCs are

constrained to 0. If the formulas for single-level effect size were used, we would get

SEnaive(d) =
√

1/225 + 1/45 + (−1.477)2/[2(225 + 45 − 2)] = 0.175, an underestimation of the

SE by slightly more than 25%.

On the other hand, if the homogeneity assumption was relaxed, the unstandardized

treatment effect was γ̂100 = −1.788, SE = 0.254. The estimated variance components of the

treatment arm were: σ̂2
W |T = 1.455, σ̂2

2 = 0.188, σ̂2
3 = 0.150. For the control arm, σ̂2

C = 1.513

(SE = 0.262). Using maximum likelihood, we obtained δ̂C = −1.454, SE = 0.258, and 95% CI
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[−1.96,−0.95]. Therefore, we can be 95% confident that the group-based treatment reduced the

depression outcome by 0.95 to 1.96 standard deviations compared to the wait-list patients. Very

similar results for dC may be obtained using summary statistics and equations (23) and (24).

Although the magnitudes of δ̂W and δ̂C are similar, the variability of δ̂C (SE = 0.258) is larger

than δ̂W (SE = 0.219) because δ̂C only uses the control arm SD and, in our example, there were

only 45 observations in the control arm.

Conclusion

Despite a movement in the field of social and behavioral research towards effect size

reporting in the past two decades, changes have been relatively slow for multilevel studies. It is

also extremely rare to see researchers doing primary research reporting SE or confidence intervals

for effect size estimates in multi- or even single-level studies (Peng et al., 2013). A major reason

for the scarcity of adequate effect size reporting involves the great variations in multilevel designs;

that is, the data may be clustered in different ways with different numbers of levels across different

groups. Despite recent efforts to supplement the literature with methods for estimating effect size

for the most commonly used designs, more attention needs to be paid to other variations in

multilevel data and to evaluating the performances of existing methods.

The contributions of the present paper are fourfold. First, the study addressed the limitations

of Hedges and Citkowicz’s (2015) work on effect size estimation for two-level partially nested

designs by relaxing the homogeneity of variance assumption. As it is a strong assumption that the

treatment would not alter the within-cluster variability, it is important that applied researchers

receive guidance on computing effect size using only the control arm SD. Second, the present

paper discussed an estimation approach using maximum likelihood that is easier and more

accurate with primary data, which, in turn, reduces the burden for applied researchers to report

effect size estimates and the corresponding confidence intervals. This study helps researchers

working with such a design to quantify and understand the practical significance of their results in

addition to relying only on statistical significance tests, as studies with large sample size the point
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and interval estimates of d are much more informative than simply stating the p-value. Our

discussion also provides tools for meta-analysts synthesizing effects of group interventions. Third,

using simulation results, the present paper is the first to show that all four effect size estimators

discussed—dW , δ̂W , dC , and δ̂C—performed well in most of the simulation conditions, and δ̂W

and δ̂C produced more precise results for researchers doing primary research. Thus, our results

added to the previous simulation results regarding model parameter estimates (e.g., Baldwin et al.,

2011) and analytical results on effect size (Hedges & Citkowicz, 2015) when partially nested data

are available. Finally, to the best of our knowledge the present study is the first to consider effect

size for a three-level treatment one-level control design.

Based on our simulation results, when the required input is available, the newly proposed

maximum likelihood estimators δ̂W and δ̂C is to be preferred over dW and dC as δ̂W and δ̂C

yielded more precise effect size estimates with a smaller standard error, especially under

conditions with unbalanced cluster sizes and large design effect (i.e., a large average cluster size

together with a large ICC; Kish, 1965). On the other hand, when the maximum likelihood

estimators cannot be obtained, a situation that is common when conducting meta-analyses, dW and

dC are still viable alternatives as they are efficient with balanced cluster sizes. That is, although

they are less efficient than the maximum likelihood estimators under conditions with unbalanced

cluster sizes and large design effect, they still provide appropriate sampling variance estimates for

the estimated effect size. Moreover, it is important to avoid applying the formulas for single-level

effect size to multilevel data as that can result in severely underestimated sampling variance, thus

incorrectly inflating the contribution of the effect size estimates from the multilevel studies

towards the synthesized effect size.

Our simulation results also suggested that the efficiency loss as a result of using only the

control arm SD instead of the pooled SD was relatively small except for conditions with high

treatment-to-control sample size ratio, small level-1 and level-2 sample sizes, and a large effect

size. When there were at least 30 clusters and an average of 25 participants for each cluster, the

efficiency loss was negligible. The benefit of using only the control arm SD to estimate effect size
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is that it does not make the assumption of equal variances across treatment arms. Therefore, we

recommend the use of dC and δ̂C with m ≥ 30 and n̄ ≥ 25 unless one has a theoretical justification

and is very confident that the variances are equal across treatment arms.

Despite the contributions of this discussion, a few limitations must be noted. First, to

calculate d and δ̂, and particularly their variances, can be tedious. As a result, substantive

researchers may prefer more automated procedures. Thus, it is recommended that future study

investigate other methods such as bootstrapping (e.g., Goldstein, 2011). Second, we assumed that

the control arm standard deviation is the preferred metric for standardization, which is consistent

with how effect sizes are developed in single-level studies (e.g., Grissom & Kim, 2012).

However, as noted in Hedges and Citkowicz (2015), for multilevel data and in certain situations

the clustered treatment arm may be considered more natural. If the total SD for the clustered arm

is to be used to define effect size, one can still easily obtain sample effect size estimates by

changing the denominator, but the expression for the sampling variance is more complex and

needs further investigation.

Third, we only considered designs with an unclustered control arm. As discussed in Heo et

al. (2014), Lohr et al. (2014), and Sterba (2015), a partially nested design with a three-level

treatment arm and a two-level control arm is also common, and the fact that the control arm is

clustered brings additional complexity to defining standardized effect size and deriving the

sampling variance of effect size estimator. It is recommended a follow up study be devoted to

discussing ways to estimate effect size with this design. Fourth, the simulation results in this study

apply only to simple situations with two arms and no covariates. Therefore, it is recommended

that impact of additional complexity on effect size estimation be further addressed in the future.

Finally, although from our simulation results the performance of δ̂W and δ̂C was acceptable even

for small numbers of clusters and cluster sizes with an unbalanced design, under such conditions

maximum likelihood can produce standard errors for fixed and the random effects that are too

small (e.g., Maas & Hox, 2004), so researchers may consider using some version of corrected

standard errors for small sample size (e.g., Kenward & Roger, 1997) when computing effect size
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estimates. Future research is needed to demonstrate whether the use of corrected standard errors

leads to substantial improvement in the point and variance estimates of effect size for partially

nested designs.
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Footnotes

1Note that the estimator dWHC in Hedges and Citkowicz (2015) is different from the dW in our

discussion here. Their dWHC is defined using only the SD of the control arm with the assumption of

homogeneity of variance. This is conceptually similar to our dC with the difference that our dC is

still consistent with heterogeneous variance. In summary, dWHC is less efficient than our dW when

the homogeneity of variance assumption holds, and dWHC is inconsistent when the homogeneity of

variance assumption is violated.
2For single-level studies it is common to use d for the effect size estimator using the pooled

standard deviation, and use ∆ for the estimator using the control arm standard deviation (Grissom

& Kim, 2012). In this paper, however, we use the superscript C for estimators using the control

arm standard deviation as it can apply both to estimation using summary statistics and that using

maximum likelihood
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Table 1
Mean Relative Efficiency of Effect Size Estimation Using Control Arm SD
Relative to Using Pooled SD Under Homogeneity of Variance

NT :NC m n̄ δ RE(dC, d)
1 10 5 0.2 0.98

0.5 0.97
0.8 0.95

25 0.2 1.00
0.5 0.99
0.8 0.98

30 5 0.2 0.99
0.5 0.98
0.8 0.96

25 0.2 1.00
0.5 0.99
0.8 0.98

100 5 0.2 1.00
0.5 0.99
0.8 0.96

25 0.2 1.00
0.5 1.00
0.8 0.99

5 10 5 0.2 0.79
0.5 0.74
0.8 0.66

25 0.2 0.95
0.5 0.93
0.8 0.89

30 5 0.2 0.94
0.5 0.88
0.8 0.81

25 0.2 0.99
0.5 0.96
0.8 0.91

100 5 0.2 0.98
0.5 0.93
0.8 0.85

25 0.2 0.99
0.5 0.96
0.8 0.93

Note. NT = sample size of the treatment arm. NC = sample size of the control
arm. m = number of clusters in the treatment arm. n̄ = average cluster size. δ =
population effect size. RE(dC, d) = efficiency of effect size estimator using only
control arm SD relative to that using the pooled SD.
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Figure 1. Distribution of standardized biases for two-level partially nested design. δ̂W = Effect
size estimator using maximum likelihood with the pooled SD; δ̂C = Effect size estimator using
maximum likelihood with the control arm SD; dW = Effect size estimator using summary statistics
with the pooled SD; dC = Effect size estimator using summary statistics with the control arm SD.
Results for δ̂W and dW are only for conditions with homogeneous level-1 variances across the
treatment and the control arms; those for δ̂C and dC are for both homogeneous and heterogeneous
variances.
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Figure 2. Distribution of relative SE biases for two-level partially nested design. δ̂W = Effect size
estimator using maximum likelihood with the pooled SD; δ̂C = Effect size estimator using
maximum likelihood with the control arm SD; dW = Effect size estimator using summary statistics
with the pooled SD; dC = Effect size estimator using summary statistics with the control arm SD.
Results for δ̂W and dW are only for conditions with homogeneous level-1 variances across the
treatment and the control arms; those for δ̂C and dC are for both homogeneous and heterogeneous
variances.
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Figure 3. Efficiency of δ̂W (and δ̂C) relative to dW (and dC). Relative efficiency was computed as
the ratio between the mean squared errors for δ̂W (and δ̂C) and for dW (and dC).
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Figure 4. Distribution of standardized biases for three-level partially nested design. δ̂W = Effect
size estimator using maximum likelihood with the pooled SD; δ̂C = Effect size estimator using
maximum likelihood with the control arm SD; dW = Effect size estimator using summary statistics
with the pooled SD; dC = Effect size estimator using summary statistics with the control arm SD.
Results for δ̂W and dW are only for conditions with homogeneous level-1 variances across the
treatment and the control arms; those for δ̂C and dC are for both homogeneous and heterogeneous
variances.
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Figure 5. Distribution of relative SE biases for three-level partially nested design. δ̂W = Effect
size estimator using maximum likelihood with the pooled SD; δ̂C = Effect size estimator using
maximum likelihood with the control arm SD; dW = Effect size estimator using summary statistics
with the pooled SD; dC = Effect size estimator using summary statistics with the control arm SD.
Results for δ̂W and dW are only for conditions with homogeneous level-1 variances across the
treatment and the control arms; those for δ̂C and dC are for both homogeneous and heterogeneous
variances.
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Appendix

Derivation of Effect Sizes for Partially Nested Designs

Theorem

The following steps to finding an unbiased estimator are based on the work of Hedges

(2007, pp. 360–362). Consider a sample estimator of δ = ∆µ/σ in the form

d = correction factor × (∆Ȳ/S), where S is an estimator of σ with E(S2) = bσ2 and V(S2) = 2cσ4.

Further, let ∆Ȳ ∼ N(∆µ, aσ2). It can then be shown that, by choosing
√

b as the correction factor,

d =
√

b
∆Ȳ
S
= T
√

a (A1)

would be approximately unbiased and consistent for δ. When S2 has a scaled χ2 distribution

(which holds exactly with equal cluster size and approximately with unequal cluster size; see

Searle et al., 2006), the random variable T = d/
√

a has a noncentral t distribution with b2/c

degrees of freedom and a noncentral parameter of δ/
√

a. From Hedges (1981), when b2/c→∞,

d would be normally distributed with mean δ and the asymptotic variance

V(d) = a +
cδ2

2b2 . (A2)

It is clear that as b2/c→∞, V(d) will be dominated by the first term a and be independent of δ.

This is consistent with other large-sample results where the estimator converges to a normal

distribution where the mean and the asymptotic variance are independent.

Our task is to express a, b, and c in terms of known quantities, and substitute them into

equations (A1) and (A2), when δ is defined as ∆µ/σ2
W .

Derivation of d for the Two-Level Partially Nested Design

In a balanced design where the cluster sizes in the treatment arm are equal, the sample

grand mean is an unbiased and efficient estimator of the population mean in both the treatment

arm and the control arm. First assume that σ2
W |T = σ

2
C = σ

2
W , that is, υ = 1. Denote ȲT

.. and ȲC as
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the grand means for the treatment arm and the control arm, with corresponding sampling variance

V(ȲT
.. ) =

σ2
W + nσ2

B

NT = σ2
W

1 + n(1 − ρ)
NT (1 − ρ)

, (A3)

V(ȲC) =
σ2

W

NC . (A4)

The expression for V(ȲT
.. ) follows from the definition of ICC such that ρ = σ2

B/(σ
2
B + σ

2
W ). The

treatment effect could be then estimated as

∆Ȳ = ȲT
.. − ȲC, (A5)

with sampling variance

V(ȲT
.. − ȲC) = σ2

W

[
1 + (n − 1)ρ
NT (1 − ρ)

+
1

NC

]
. (A6)

The expectation and variance of the variance components would then be

E(SSW |T ) = (NT − m)σ2
W,

E(SSC) = (NC − 1)σ2
W,

V(SSW |T ) = 2(NT − m)σ4
W,

V(SSC) = 2(NC − 1)σ4
W .

Because S2
W = (SSW |T + SSC)/(NT − m + NC − 1),

E(S2
W ) =

(NT − m)σ2
W + (N

C − 1)σ2
W

NT − m + NC − 1
= σ2

W

and

V(S2
W ) =

2(NT − m)σ4
W + 2(NC − 1)σ4

W

(NT − m + NC − 1)2
=

2σ4
W

N − m − 1
.



PARTIALLY NESTED EFFECT SIZE 45

Hence

a =
1 + (n − 1)ρ
NT (1 − ρ)

+
1

NC ,

b = 1,

c =
1

N − m − 1
.

We can now substitute a, b, and c into (A1) and (A2) to get the expressions in the main text.

Unbalanced cluster sizes. When the cluster sizes n1, . . . , nm are not equal, V(ȲT
.. ) is not

just a function of n̄. First note that ȲT
.. =

∑m
j=1

∑nj

i=1 YT
i j /N

T . Under our model and for a specific

cluster j, V(YT
i j ) = σ

2
W |T + σ

2
B and Cov(YT

i j ,Y
T
i j ′) = σ

2
B for j , j′, so V(

∑nj

i=1 YT
i j ) = n jσ

2
W |T + n2

jσ
2
B.

As the clusters are assumed to be independent of each other,

V(ȲT
.. ) = (

∑m
j=1 n jσ

2
W |T +

∑m
j=1 n2

jσ
2
B)/(N

T )2 = σ2
W |T/N

T + ñσ2
B. Therefore, the formulas for d and

V(d) would work by replacing n with ñ.

Using the SD of the control arm to compute dC . If only the standard deviation of the

control arm is used, and the homoscedasticity assumption is not made,

V(ȲT
.. ) = υσ

2
C

1 + n(1 − ρ)
NT (1 − ρ)

and c = 1/(NC − 1), resulting in the formula for V(dC) in equation (16), and for unbalanced

cluster sizes one can replace n by ñ.

Derivation of d for the Three-Level/One-Level Partially Nested Design

In a balanced design with equal cluster sizes at level 1 and at level 2 in the treatment arm,

and assuming that σ2
W |T = σ

2
C = σ

2
W (i.e., υ = 1), it can be shown that the sampling variance for the
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grand means are

V(ȲT
...) =

σ2
W + nσ2

2 + n2σ
2
3

NT = σ2
W

[
1 + nρ2 + n2ρ3

NT (1 − ρ2 − ρ3)

]
, (A7)

V(ȲC) =
σ2

W

NC . (A8)

It follows then

V(ȲT
... − ȲC) = σ2

W

[
1 + nρ2 + n2ρ3

NT (1 − ρ2 − ρ3)
+

1
NC

]
, (A9)

so

a =
1 + nρ2 + n2ρ3

NT (1 − ρ2 − ρ3)
+

1
NC . (A10)

It is also clear that the pooled level-1 variance is an unbiased estimator of σ2
W and the degrees of

freedom is N − P − 1 (df = NT − P − 1 for the treatment arm; df = NC − 1 for the control arm).

Referring to the definition of the constants b and c in the theorem in the beginning of this

Appendix, for the three-level/one-level design one obtains

b = 1,

c =
1

N − P − 1
.

We can now substitute a, b, and c into (A1) and (A2) to get the expressions in the main text.

Unbalanced cluster sizes. Without the assumption of a balanced design and under the

model in equation (20), for the treatment arm one has

Cov(yi j k, yi′ j ′k ′) =



Var(yi j k) = σ
2
W |T + σ

2
2 + σ

2
3, i = i′, j = j′, k = k′

σ2
2 + σ

2
3, i , i′, j = j′, k = k′

σ2
3, i , i′, j , j′, k = k′

0, i , i′, j , j′, k , k′

.
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Therefore, the unweighted sum of all the y values in the treatment arm, YT
... =

∑m
k=1

∑pk
j=1

∑njk

i=1 YT
i jk ,

has a sampling variance

V(YT
...) = NT

σ
2
W |T +

m∑
k=1

pk∑
j=1

n2
j kσ

2
2 +

m∑
k=1

©­«
pk∑
j=1

n j k
ª®¬

2

σ
2
3 . (A11)

Dividing both sides by (NT )2, one gets V(ȲT
...) = σ

2
W |T/N

T + ñσ2
2 + ñ2σ

2
3. With b and c unchanged,

the formulas for d and V(d) for unbalanced designs can be obtained by replacing n with ñ and n2

with ñ2.

Using the SD of the control arm to compute dC . If only the standard deviation of the

control arm is used, and the homoscedasticity assumption is not made, then

V(ȲT
.. ) = υ

1 + (n − 1)ρ2 + (n2 − 1)ρ3

NT (1 − ρ2 − ρ3)

and c = 1/(NC − 1), resulting in the formula for V(dC) in equation (24). For unbalanced cluster

sizes one can replace n by ñ and n2 by ñ2.

Derivation of δ̂ for Partially Nested Designs

In order to calculate δ̂ for partially nested data, we assume that estimates of the fixed effect

γ̂01, of the within-level variance component σ̂2
W , as well as of their corresponding variance V(γ̂01)

and V(σ̂2
W ) are available. Using the same framework for deriving the distribution of d, we have

γ̂10 ∼ N(∆µ, aσ2
W ) and thus V(γ̂10) = aσ2

W , so

a =
V(γ̂2

10)

σ̂2
W

.

Based on the theorem in the beginning of this Appendix, if we use S2 = σ̂2
W as an estimator for σ2

W ,

we get E(σ̂2
W ) = bσ2

W . Assuming that σ̂2
W is approximately unbiased, that is, E(σ̂2

W ) = σ
2
W , we have

b = 1.
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The theorem also states that V(S2) = 2cσ4, and in our case, if we replace S2 by σ̂2
W and σ by σ̂W ,

we get

c =
V(σ̂2

W )

2(σ̂2
W )

2
.

Then by substituting a, b, and c into (A1) and (A2), one get the expressions for δ̂ and V(δ̂). For

the estimation of δ̂C , one can simply replace the point and variance estimates of σ̂2
W by those of σ̂2

C
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