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Abstract 

Researchers in education and other applied areas commonly use the rule of thumb of “design 

effect smaller than 2” as the justification of why they have not adopted the multilevel analyses or 

related techniques to account for the multilevel or clustered structure in their data. The rule, 

however, has not yet been systematically studied in previous research. In the present study, we 

generated data from three different models (with clustering effect only on the outcome, the level-

1 predictor, and the relation between them). With a 3 (level of design effect) × 5 (cluster size) × 

4 (number of clusters) factorial Monte Carlo simulation study we found that the rule should not 

be applied when researchers: (a) are interested in the effects of higher-level predictors, or (b) 

have a smaller cluster size (i.e., less than 10 observations per cluster). Implications of the 

findings and limitations of the study are discussed.  

Keywords: simulation studies; design effects, multilevel, intraclass correlation, clustering 
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Examining the Rule of Thumb of Not Using Multilevel Modeling: The “Design Effect Smaller 

Than Two" Rule 

Researchers in the field of education and other applied areas commonly refer to the 

design effect (Kish, 1965) when analyzing complex surveys or clustered data. Sometimes they 

apply the rule of thumb that “[i]f the design effect is smaller than two, using single level analysis 

on multilevel data does not seem to lead to overly misleading results” (Hox and Maas, 2002, p. 5; 

see also Muthén & Satorra, 1995). Surprisingly, to our knowledge there have not been any 

systematic methodological studies pertaining to the performance of this rule. In the present study, 

we try to fill this research gap using simulated data with the consideration of three design factors, 

including number of clusters, cluster sizes, and the magnitudes of the design effect. 

In education literature we found that the “design effect smaller than two” rule was 

regularly invoked. Indeed, Peugh (2010), in a pedagogical article on how to apply multilevel 

modeling to educational data, recommended applied researchers to use multilevel modeling 

when the design effect was larger than two. In a recent article about on-task and off-task 

behaviors among 697 students from 35 classrooms (Kilian, Hofer, & Kuhnle, 2010), the authors 

used single-level analyses given that the design effects for all variables are smaller than 2 

(between 1.01 and 1.61). In another study on victimization and bullying among 73 children 

among 46 classrooms and 18 schools (Bonnet, Goossens, & Schuengel, 2011), the authors 

reasoned that as the average number of children in a classroom was 1.6, the design effect must be 

smaller than 2, and they chose the single-level regression analysis rather than the multilevel 

model. From our literature review in PsycINFO and ERIC (Educational Resources Information 

Center database) we found many similar studies in the field of education using this rule as a 

justification for not using multilevel models for multilevel/clustered data (e.g., Bouman et al., 
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2012; De Los et al. 2011; Deng et al., 2006; Hong & You, 2012; Linnenbrink-Garcia, Rogat, & 

Koskey, 2011; Ly, Zhou, Chu, & Chen, 2012; Wong et al., 2006; von Grünigen, Kochenderfer-

Ladd, Perren, & Alsaker, 2012). This rule was also commonly used in other research areas such 

as psychology (e.g., Corte & Zucker, 2008; Wagner, Christ, Pettigrew, Stellmacher, & Wolf, 

2006), business (Qureshi & Fang, 2011), and medical science (Fuentes, Hart-Johnson, & Green, 

2007).  

When the clustered data structure is ignored and all variables are treated as if they are 

from one single level, the estimated regression coefficients are usually still unbiased, but the 

estimated standard errors associated with these coefficients are  likely to be negatively biased or 

underestimated (Hox, 2010; Raudenbush & Bryk, 2002). This happens because single-level 

analyses assume that all observations are independent, but for clustered data the observations 

within a cluster are usually correlated (Thomas & Heck, 2001). An underestimated standard error 

invites a researcher to underestimate the uncertainty in their results (Goldstein & Spiegelhalter, 

1996). It also leads to confidence intervals that are too narrow, as well as spurious statistically 

significant results (i.e., inflated Type I error rates; Hox, 2010; Snijders & Bosker, 2012).  

The extent that the estimated standard error is biased depends on the degree to which 

individuals are correlated within clusters (Hox, 2010). This can be illustrated with an example in 

Hox (2010) about the popularity (derived by a sociometric procedure) of 2,000 students from 

100 classrooms. There is no doubt variation in students’ popularity within a classroom. On the 

other hand, if we represent each classroom by the mean popularity of its student, likely there will 

also be variation in the classroom means across classrooms, for reasons such as teachers’ 

characteristics and classroom climate. The clustering effect is stronger when the between-

classroom variation is relatively large compared to the within-classroom variation, which means 
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that a randomly picked student from one classroom is much more similar to another one from the 

same classroom than to a third student from a different classroom. The ratio of the between-

classroom variance to the sum of the between- and within-classroom variances is then called the 

intraclass correlation (ICC) which generally ranges from zero to one. In the popularity example 

the ICC for the popularity measure was .36, so there were quite a lot of variations of popularity 

at the classroom level.  

If individuals within a cluster (e.g., a classroom) are no more similar to each other than to 

those in a different cluster (i.e., ICC = 0), then the independent observation assumption for the 

single-level analyses is not violated, and ignoring the clustered structure will not be a problem 

(Muthén, 1994). Furthermore, if ICC = 0 and both clusters and individuals within a cluster are 

randomly sampled, then the sample is equivalent to a simple random sample (Thomas & Heck, 

2001). Apart from the ICC, cluster size can elevate the negative bias of the estimated standard 

error (i.e., more substantial negative bias in standard error with larger cluster size). When each 

cluster includes only one individual and the clusters can be assumed independent, the 

independent observation assumption again holds. To quantify the degree that a sample deviates 

from a simple random sample, Kish (1965) defined design effect (deff) of a sample statistic (e.g., 

of the mean of a variable) as “the ratio of the actual variance of a sample to the variance of a 

simple random sample of the same number of elements” (p. 258). In multilevel modeling, deff 

can be estimated as a function of the intraclass correlation (ICC) and average cluster size (c) such 

that (Muthén & Satorra, 1995): 

 deff = 1 + (c − 1) × ICC.        (1)  

The relationship between deff, c, and ICC is shown in Table 1. For example, a small ICC of .018 

with a relatively large cluster size of 50 yields a deff of 1 + (50 − 1) × .018 = 1.9, whereas a large 
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ICC of .90 with a relatively small cluster size of 2 also yields a deff of 1 + (2 − 1) × .90 = 1.9. In 

the popularity example with 20 students per classroom, deff of the mean of the popularity 

measure = 1 + (20 − 1) × .36 = 7.84, indicating that the sampling variance of the mean of the 

popularity measure will be almost eight times larger than if the 2,000 students are drawn as a 

simple random sample.  

A rule of thumb for using deff in applied research is that when it is smaller than two, the 

degree of bias in the standard error is tolerable. Hox and Maas (2002) traced the source of the 

rule to Muthén and Satorra’s (1995) paper. In their subsequent methodological work, Maas and 

Hox (2004, 2005) evaluated performances of multilevel modeling using only simulated data with 

deff larger than 2. However, in Muthén and Satorra’s original simulation it was the ICC rather 

than the deff that was treated as the manipulated factor. In their study they generated data based 

on a random intercept model with one predictor that had equal level-1 and level-2 regression 

coefficients on the outcome, and a random effect for the intercept of the outcome. The only three 

conditions in their study with deff smaller than two were: (1) c = 7, ICC = .05 (deff = 1.3), (2) c = 

7, ICC = .10 (deff = 1.6), and (3) c = 15, ICC = .05 (deff = 1.65), and in these three conditions, 

the percentages of bias in the standard error were: −5%, −10%, and −13%, respectively.  

Readers should note that in the original paper Muthén and Satorra (1995) did not give 

any conclusions that clustering can be ignored when deff is smaller than 2.  Also, the average 

cluster size in their simulated data was at least 7, which may not be applicable to some of the 

data sets in educational research where the average cluster size can be small (e.g., Bonnet et al. 

2011; Jester et al., 2008; Wong et al., 2006). For example, in Bonnet et al.’s (2011) study there 

were 73 victimized children from 46 classrooms (i.e., an average cluster size of 1.6); and in 

Semke et al.’s (2010) study about the role of family involvement on students’ disruptive 
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behaviors they had 207 parents whose children are from 82 classrooms (i.e., an average cluster 

size of 2.5). In the simulation study by Clarke (2008), it was found that single-level analyses 

underestimated the standard errors of both level-1 and level-2 fixed effects (i.e., regression 

intercepts and regression coefficients) by 10 to 15% for conditions with cluster size smaller than 

5, where deff was smaller than 1.4. Nevertheless, in that study deff was not directly manipulated 

and the ICC was fixed to .1, so the effects of deff and ICC were unknown.    

In addition, we are interested in the effect of number of clusters on the standard errors 

when the rule of thumb is applied and the clustering is ignored. Equation (1) suggests that deff is 

not a direct function of number of clusters. Muthén and Satorra (1995) found no clear difference 

in their simulation results when the number of clusters was reduced from 200 to 50. To our 

knowledge there are no other simulation studies on deff that treated number of clusters as a 

design factor. In our simulations we have further included conditions for 20, 30, 50, and 100 

clusters to see whether the effect of number of clusters is still ignorable when a higher level 

predictor is included and the average cluster size is small.  

It is also questionable whether the rule of deff smaller than two is applicable to random 

coefficient models with clustering present on the relationship between the predictor and the 

outcome variable. This can again be illustrated with the popularity example where the effect of 

extraversion on popularity is of interest. If in reality the effect of extraversion on popularity were 

constant across classrooms (i.e., fixed coefficient model or model with only random effect for 

the intercept but not for other coefficients), a single-level analysis only ignores the clustering of 

students’ extraversion and popularity, resulting in underestimated standard errors of the fixed 

effect estimates. However, there can be substantial variations in the effect of extraversion on 

popularity from classroom to classroom that single-level analyses do not take into account, but 
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can be handled by the random coefficient model that incorporates the variation in the regression 

coefficient (i.e., the effect of extraversion on popularity). In Muthén and Satorra (1995) they only 

considered models where the regression coefficients were fixed, and to our knowledge the 

efficacy of the deff rule of thumb for random coefficient model has not been systematically 

studied.  Therefore, in our Monte Carlo study, we have also evaluated the effectiveness of the 

rule of thumb under the random coefficient model by generating data with a random coefficient.  

To the best of our knowledge, there have not been any published studies directly 

investigating the performance of deff and the validity/effectiveness of the rule of thumb. Yet a 

number of articles did refer to the rule as a justification of not using analyses that could account 

for the clustered structure in their data even though the sample characteristics in these studies 

were not comparable to those in Muthén and Satorra’s (1995) simulation conditions. Given the 

limitations of Muthén and Satorra’s study and other previous studies, in this study we have 

directly manipulated different levels of deff, varied the number of clusters, and included 

predictors from different levels.  

Method 

We used three data generating models for our simulation study. Each of them have one 

dependent variable (Y), one level-1 predictor (X), and one level-2 predictor (W), as shown in 

Figure 1. The three models differ in the location where clustering is present. In Model 1 (as 

shown in Figure 1a), the clustering is present only in Y (but not X, which means that ICC of X = 

0); In Model 2 (as shown in Figure 1b), the clustering is present in both X and Y (but not the 

relationship between X and Y, which means that regression coefficient of X is still constant across 

clusters); In Model 3 (as shown in Figure 1c), the clustering is present in X, Y, and also the 

within-cluster relationship between X and Y.  
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Simulation Conditions 

For each data-generating model, a 3 (value of deff) × 5 (c, cluster size) × 4 (n, number of 

clusters) factorial design was employed, totaling in 60 conditions. We selected deff = 1.1, 1.5, 1.9 

to evaluate the bias of the estimated standard error (SE) for conditions when the rule of thumb 

said that the estimated parameter values and corresponding SEs from the single level model 

should be acceptable. Given that deff = 1 can be viewed as the lower boundary of deff (i.e., deff = 

1 when ICC = 0), we chose deff = 1.1 and deff = 1.9 as the two extreme values and deff = 1.5 as 

the middle point.  We chose five values of cluster size (c): 2, 3, 5, 10, and 50 per cluster, which 

are similar to the conditions in Clarke (2008). The numbers of clusters were 20, 30, 50, and 100, 

which is consistent with Maas and Hox (2004) and smaller than the ones used in Muthén and 

Satorra (1995).  

Model Equations 

For all three data-generating models, X (the level-1 predictor) was group-mean centered: 

centered with respect to the cluster mean of X∙j for the jth group (where i = 1, . . . ,c and j = 1, . . ., 

n). We chose to do group-mean centering so that the level-1 effect and the level-2 effect of X on 

Y are not confounded. An example is given in Kreft and de Leeuw (1988) about gender as a 

level-1 variable and gender ratio of a classroom, where both are hypothesized to have an effect 

on reading ability. However, they found that whereas female gender had a positive effect on 

reading scores within a classroom, classrooms with a higher proportion of female students tended 

to have lower mean reading scores. If researchers do single-level analyses and only do grand-

mean centering, or do not center the predictors at all, the estimated effect is the combined effect 

of both level-1 and level-2 (Enders & Tofighi, 2007), which is not comparable to the effect 
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estimated using multilevel modeling. Hence, as recommended by Enders and Tofighi (2007), we 

adopted group-mean centering to generate our data.  

Under the traditional multilevel modeling framework (Raudenbush & Bryk, 2002), the 

level-1 (i.e., within-cluster) model can then be expressed as 

Yij = β0j + β1j(Xij − X∙j) + eij,        (2)  

where Yij denotes the Y score of the ith individual in the jth cluster, β0j denotes the regression 

intercept specific to the jth cluster, β1j denotes the within-cluster regression coefficient of X for 

the jth cluster, and eij denotes the level-1 residual, which in this study was assumed to be 

normally distributed. The level-2 (i.e., between-cluster) model can be expressed in the following 

equations 

β0j = γ00 + γ01Wj + γ02X∙j + u0j,        (3)  

β1j = γ10 + u1j,          (4)  

where γ00 is the level-2 intercept (or the average intercept across all n clusters) of Y; γ10 is the 

mean of level-1 regression coefficient β1j across the n clusters; γ01 is the level-2 regression 

coefficient of Y regressing on W; γ02 is the level-2 regression coefficient of Y regressing on the 

cluster mean of X (i.e., X∙j). The term u0j is the normally distributed level-2 residual when β0j is 

regressed on X∙j and W, and u1j is the difference between β1j from the mean (i.e., γ01) for the jth 

cluster. We use σ2 to denote the level-1 residual variance (i.e., Var(eij) = σ2), τ00 to denote the 

level-2 intercept residual variance (i.e., Var(u0j) = τ00), and τ11 to denote the level-2 slope 

variance (i.e., Var(u1j) = τ11). The three components were generated to be independent (and so τ10, 

the covariance between u0j and u1j, is zero). Combining the two levels, the model can be 

expressed as: 

Yij = γ00 + γ01Wj + (γ10 + u1j)(Xij − X∙j) + γ02X∙j + u0j + eij.     (5)  



DESIGN EFFECT SMALLER THAN TWO  11 

 

Model 1. Both τ11 and Var(X∙j) were set to zero in Model 1, and the model simplifies to  

Yij = γ00 + γ01Wj + γ10(Xij − X∙j) + u0j + eij.        (6)  

For all conditions in Model 1, we set γ00 = 0 without loss of generality. Both W and X were mean 

centered, had a variance of 1.0, and exerted a medium effect on Y, such that the variance 

explained was equal to 10% for both level-1 and level-2. The level-2 residual variance, τ00, was 

fixed to 1.0, and thus based on partitioning of variance, for Model 1 the regression coefficient of 

W was   

γ01 = {[R2
between × τ00 / (1 − R2

between)] / Var(W)}0.5 = 1 / 3,    (7)   

where R2
between referred to the proportion of explained variance of Y in level-2. The total variance 

of Y in level-2 was thus τ00 / (1 − R2
between) = 10 / 9. In level-1, the regression coefficient of X 

predicting Y was  

γ10 = {[R2
within × σ2 / (1 − R2

within) / Var(X)]}0.5 = σ / 3,     (8) 

where R2
within referred to the proportion of explained variance of Y in level-1. The total variance 

of Y in level-1 was thus σ2 / (1 − R2
within) = 10σ2 / 9. Because ICC was defined as the ratio of the 

level-2 variance of Y to the sum of level-1 and level-2 variances of Y, in this study it was equal to: 

(10 / 9) / [(10 / 9 + 10σ2 / 9)] = 1 / (1 + σ2),       (9) 

and thus σ2 = (1 − ICC) / ICC. For example, when deff = 1.9, c = 2, ICC is equal to .90 and σ2 = 

(1 − .90) / .90 = 0.11. The corresponding specification of this model (under the multilevel 

structural equation modeling framework) is presented in Figure 1a. 

Model 2. For Model 2, we set τ00 = 0, Var(X∙j) > 0, and γ10 = γ02. The model is expressed 

as:  

Yij = γ00 + γ01Wj + γ10(Xij − X∙j) + γ02X∙j + u0j + eij.      (10)  
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The only difference between Model 1 and Model 2 is that the former has ICC of X being fixed to 

zero, whereas the latter one has ICC of X constrained to be equal to the ICC of Y. Because we are 

interested in the impact of the rule of thumb on the SEs of the fixed effects, to simplify the data 

generating model we set γ10 = γ02 so that theoretically the estimates of both the single-level 

estimator and the multilevel estimator are the same. Due to the presence of the effect of X∙j, γ01 

was smaller than 1 / 3 and depended on the ICC of X so that the explained variance of Y in level-

2 remained 10%. Note that the setup of Model 2 is the same as the regression model in the 

simulation study by Muthén and Satorra (1995), except that we have included a level-2 predictor 

W. For Model 2, the level-1 variance of X was kept to 1.0, but the level-2 variance of X, or 

Var(X∙j), was set to a value such that the ICC of X matched that of Y. For example, when deff = 

1.5, c = 5, ICC was equal to 0.125, and Var(X∙j) was equal to ICC / (1 – ICC) = 0.125 / 0.875 = 1 

/ 7. The corresponding specification of this model is presented in Figure 1b. 

Model 3. As compared with model 1, in model 3 both τ00 and Var(X∙j) were larger than 0, 

and the model has the form as equation (5) with γ02 set to zero (i.e., X only has a level-1 effect on 

Y for Model 3, similar to the model in Clarke, 2008). The level-2 variance of X was the same as 

for Model 2, and consistent with Kwok, West, and Green (2007) the slope variance was set to be 

half of the value of the intercept variance, that is, τ11 = τ00 / 2 = 0.5. The corresponding 

specification of this model is presented in Figure 1c. 

Procedures 

For each condition, 2,000 data sets were generated using Mplus 7 (L. K. Muthén & 

Muthén, 1998–2012). For each data set, u0j, u1j, Wj, and X∙j (group means of X) were generated 

from four independent normal distributions with means being zero and the following variances: 

τ00 = 1, τ11 = 0.5, Var(W) = 1, and Var(X∙j) was equal to 0 for Model 1 and equal to ICC / (1 – 
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ICC) for Model 2 and 3 respectively. Then for each cluster j, β0j and β1j were computed from 

equations (3) and (4). For a cluster j, eij was generated from a normal distribution with a mean of 

zero and a variance of 1, and Xij was generated from a normal distribution (independent of eij) 

with mean being X∙j and variance being 1. Finally Yij was computed by equation (5). The whole 

data generating process was automated using the Mplus montecarlo procedure.  

Each data set was then analyzed in Mplus using both single-level model (with the 

assumption of independent observations and maximum likelihood estimation1) and multilevel 

model (with maximum likelihood estimation and robust standard errors, or MLR in Mplus) 

specifications. The single-level model can be expressed in the following equation  

Yij = γ00 + γ01Wj + γ10(Xij − X∙j) + eij        (11) 

with no random effects (i.e., no u0j and u1j). Again, we chose to do group-mean centering so that 

both single-level and multilevel analyses estimate the same within-level effect. The multilevel 

model fitted to the data sets was the same as the data generating model in each of the three 

scenarios detailed above.  

Dependent Variables 

The major dependent variables of the present simulation study are the percentages of the 

relative biases in the SEs of the single-level estimators (i.e., when clustering was ignored) for γ00, 

γ01, and γ10. First, a model ignoring the clustered structure was fitted to the data, and the relative 

biases for the SEs were calculated as  

[1 2000⁄ ∑𝑆𝐸(θ̂(𝑖)single − 𝑆𝐷(θ̂single)/𝑆𝐷(θ̂single),    (12) 

where θ̂ is the estimated value of any parameter of interest (i.e., θ̂ refers to γ̂00, γ̂10, or γ̂01in this 

study). 𝑆𝐸(θ̂(𝑖)single) is the estimated SE of the estimated parameter θ̂ in the misspecified model 

for the ith replication, and 𝑆𝐷(θ̂single) is the standard deviation of the 2,000 θ̂ values across 
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replications (i.e., the empirical SE of θ̂) for the misspecified model (i.e., the single-level model 

as shown in equation (11)). The relative bias can then be interpreted as the average percentage of 

bias of the SE of θ̂ when the clustering of the data is not taken into account. Negative value of 

the relative bias indicates the percentage of underestimation in the SE in the single-level model 

(compared with the multilevel model). 

Results 

For all simulation conditions the convergence rates were high: 96.8% for Model 1, 99% 

for Model 2, and 93.8% for Model 3. Convergence rate was lowest for conditions with cluster 

size of 2 or 3 and when the design effect was small, which was similar to the results by Clarke 

(2008). In subsequent sections all results are based on the converged replications. Consistent 

with the findings from previous simulation studies (e.g., Clarke, 2008), the point estimates for 

the fixed effects, γ00, γ01, and γ10, were generally unbiased for both the single-level and 

multilevel models, even with a smaller cluster size of 2 and a small design effect (with 

percentage of relative bias < 6%). Next, we present the results concerning bias of the SEs.  

Relative Bias of the Standard Errors for the Multilevel Estimators  

Because the present study focused more on the bias when clustering is ignored, the 

results related to the multilevel estimator are only briefly reported. For all three models, when 

there were at least 30 clusters (i.e., n = 30), the relative bias for the SEs of the fixed effect was 

within the acceptable range of ±10% recommended by Hoogland and Boosma (1998). Only 

under the n = 20 clusters condition, the average relative SE bias became slightly out of the ±10% 

bound. This was consistent with results in previous studies (e.g., Browne & Draper, 2000; Maas 

and Hox, 2005) that showed that SEs of fixed effects were relatively unbiased only when number 

of clusters was at least 30. Hence, multilevel models for data with number of cluster (n) equal to 
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or fewer than 20 should be used with cautions given the likely bias in the SE of the fixed effect 

estimate.  The details of these findings can be obtained from the first author. 

Relative Bias of the Standard Errors for the Single-Level Estimators 

The percentage of the relative biases for the SEs of the fixed effects, γ00, γ01, and γ10 (i.e., 

the grand intercept, the level-2 regression coefficient of Wj, and the average level-1 regression 

coefficient of Xij), were shown in Tables 2, 3, and 4 respectively. The results below are organized 

by the three data generating scenarios.  

Model 1. Consistent with previous research findings (Clarke, 2008; Muthén & Satorra, 

1995), with the clustered data structure ignored and the use of the single-level model, almost all 

the estimated SEs showed a downward bias (or underestimation). On one hand, the estimated SEs 

of γ10 did not increase when deff increased, and across all conditions the strongest negative bias 

was −5.7% (or underestimated by 5.7%; Table 2). This supports the rule of thumb based on 

Muthén and Satorra (1995). On the other hand, there were stronger negative biases for the 

estimated SEs of the level-2 intercept γ00 and level-2 coefficient γ01 when deff increased. For γ00 

(Table 4), When deff = 1.1, the percentage relative biases ranged from −3% to −12% (slightly 

over the recommended ±10% boundary); When deff = 1.5, the percentage relative biases ranged 

from −17% to −25%; When deff = 1.9, the biases ranged from −27% to −34%. Deff itself 

explained the majority of the variances in the relative SE biases of the estimated level-2 

regression coefficient. In general larger negative biases were found for conditions with smaller 

cluster size (c) and fewer clusters (n). In particular with n = 20 and c = 2, the relative bias of the 

SE of γ01 was 11.9% even with a small deff of 1.1. The results for γ01 (Table 3) were basically in 

the exact same pattern as those for γ00. 
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Model 2. With clustering effect on both the predictor X and the outcome Y, the general 

pattern of negative bias for the SEs of γ10, γ00, and γ01 was very similar to those in Model 1.  

Model 3. With clustering effect on X, Y, and their relationship (i.e., the inclusion of u1j), 

the degree of negative bias for the SEs of γ00 (Table 4) and γ01 (Table 3) was again very similar 

to the results in Model 1 and Model 2, but the bias for the SEs of γ10 (i.e., the average level-1 

regression coefficient) was stronger. With deff = 1.1, the negative SE bias of γ10 (Table 2) was 

−9.9% for c = 2 and −8.2% for c = 3, with n = 20; With deff = 1.5, the negative bias was larger 

than 10% for almost all simulation conditions, and ranged from 18% to 23% with c = 2 or 3; 

With deff = 1.9 the negative bias was even stronger and ranged from 17% to 29% across 

conditions. Note that unlike in Model 2 where the negative SE bias for γ10 was small when c ≥ 10, 

in Model 3 even with c = 50, the SE bias for γ10 was still substantial. In summary, there was 

strong negative bias on the estimated SEs of the relationship between X and Y for all conditions 

with deff ≥ 1.5 when the slope varied across clusters.  

Discussion 

When Researchers are Only Interested in Level-1 Effects 

The present study aimed to evaluate the rule of thumb that “if the design effect is smaller 

than two, the effect of clustering can be ignored” (cf. Hox and Maas, 2002). We have found 

some support for this rule of thumb when certain conditions hold, including: (a) the cluster size 

(c) is at least 10, (b) the relations between level-1 predictors and the outcome are constant (i.e., 

no random coefficients allowed), and (c) the predictors are group-mean centered. Under these 

conditions, the use of the single-level model results in only slightly biased standard errors for the 

level-1 regression coefficient. This finding can be seen as a successful replication of the results 

of Muthén and Satorra (1995), as in their simulation conditions the cluster sizes were at least 
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seven and the regression coefficients did not vary across clusters. Therefore, when all the 

following conditions are satisfied, namely (1) researchers are only interested in the effects of the 

level-1 predictors, (2) there is evidence that these level-1 predictors do not have any level-2 

effects on the outcome, and (3) the effects of the predictors do not vary across clusters (i.e., no 

random coefficients), the rule of thumb holds reasonably.  

On the other hand, it is not uncommon to find variables that have both level-1 and level-2 

effects. We have discussed the example given in Kreft and de Leeuw (1988) about gender as a 

level-1 variable and gender ratio of a classroom. If the single-level analysis is used, researchers 

will get the unbiased estimate of the level-1 effect and acceptable estimates of the standard errors 

only when they do the group-mean centering for all the level-1 predictors, as shown in Table 2 

(see also Enders & Tofighi, 2007; Kreft & de Leeuw, 1998). Otherwise if researchers only do 

grand-mean centering, or do not center the predictors at all, the standard error estimates will be 

biased with the use of the single-level analyses, especially when the cluster size is small. We did 

a post-hoc analysis by reanalyzing the data sets for Model 2 with a single-level model along with 

the un-centered level-1 predictor X. We found that the estimated SE of the regression coefficient 

of the un-centered level-1 predictor was biased (underestimated) by 10% to 33% when deff = 1.9 

and c ≤ 5, compared to 0.1% to 7.2% with centered level-1 predictor X as shown in Table 2. 

Although data with such a small cluster size may not be common in cross-sectional survey 

studies, they are the norm in longitudinal design and family related studies (e.g., dyadic data), 

and researchers handling such data with small cluster sizes should be cautious in basing their 

choice of analytic techniques on deff.  

The presence of variations of level-1 coefficients across clusters makes the situation more 

complicated. It should be noted that in educational research often the effect of a predictor varies 
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across classrooms or across schools. Hox (2010) gave the example where the relation between 

extraversion and popularity varies across classrooms. As another example, Turner et al. (2002) 

found that the relation between ethnicity and self-handicapping varies across classrooms. When 

researchers speculate the existence of such coefficient variations, multilevel techniques are in 

general more appropriate than single-level analyses. On the other hand, consistent with Maas and 

Hox (2005) we found that multilevel techniques produced substantial biases with no clear 

patterns on the fixed effect coefficients under conditions with small number of clusters (e.g., 20 

clusters in our simulation study), along with small deff (e.g., deff = 1.1) and the inclusion of 

random coefficients in the model. Therefore, single-level analyses may be a more preferable 

option when there are as few as 20 clusters and when deff is small and very close to one.  

Unfortunately in real situations, often researchers have little idea whether a predictor has 

both level-1 and level-2 effects and whether the effect varies across clusters, unless they 

explicitly test those possibilities using multilevel analyses. Based on our simulation results, we 

recommend using single-level analyses and ignoring the clustering effect only when deff is as 

small as 1.1. Under other conditions, multilevel analyses produce more accurate standard errors.  

When Researchers are Also Interested in Level-2 Effects  

The interpretations of the results pertaining to the level-2 fixed effects (i.e., regression 

coefficients and intercepts) are more straight-forward. Across all three models, we showed that 

the single-level SE estimates of the level-2 regression coefficients were substantially biased 

when deff ≥ 1.5. Therefore, if researchers are interested in the statistical inference of the effects 

of level-2 predictors, they should use techniques that adequately take into account the complex 

data structure unless there are too few clusters or deff is as small as 1.1. Such techniques include 

multilevel modeling as discussed in this paper, Taylor series approximation (LaVange, Stearns, 
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Lafata, Koch, & Shah, 1996), and resampling (e.g., jackknife and bootstrap; see Rust & Rao, 

1996).  

Effect of Number of Clusters 

Another question the present research tries to answer is whether the number of clusters, n, 

affects the validity of the rule, because n affects the total sample size but deff is not a function of 

n. We found that when clustering is ignored, increment in n can only slightly reduce the negative 

bias. A possible reason is that the large cluster size (e.g., 30 clusters or more) already leads to a 

sufficiently large total sample size (at least with balanced data) and thus the effect of the total 

sample size reaches a ceiling effect. 

Limitations 

The present study has several limitations. First, the models we used include only one 

level-1 and one level-2 predictors. With more predictors and due to potential multicollinearity or 

other more complex relationships, our findings may not apply. We encourage future research to 

study the deff with models that reflect the complexity of substantive research, which may include 

the test of mediation effect, or moderation effect, or both simultaneously. Second, we only used a 

two-level clustering structure, so the results may not generalize to other data structure such as 

those involving three levels of clustering or those with crossed random effects. Future research 

addressing questions involving three or more levels of clustering (e.g., students nested within 

classrooms within schools) or other data structures (e.g., data with crossed random effects, see 

Beretvas, 2010) is needed. Third, we did not study other potential factors that could influence the 

results such as the magnitude of the regression coefficients. In addition, we fixed the cluster size 

to be constant within each simulation condition, that is, all conditions assume a balanced design. 

This may not hold in real research and previous research has shown that the performance of 
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analyses ignoring the clustered data structure may be worse with an unbalanced design (Clarke, 

2008). Despite the limitations, our study shows that the rule of thumb of design effect smaller 

than two only works in limited situations, and researchers should be with cautious when applying 

the rule of thumb.  
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Footnotes 

1As discussed in Greene (2003, chapter 17), in multiple regression analyses when the 

normality assumption of the errors holds, as is the case for the data generating models of the 

present study, the ordinary least squares estimates and the maximum likelihood estimates are 

equivalent.   
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Table 1 

Values of Intraclass Correlation Given the Average Cluster Size and the Design Effect 

 deff 

c 1.1 1.5 1.9 

2 .100 .500 .900 

3 .050 .250 .450 

5 .025 .125 .225 

10 .011 .056 .100 

50 .002 .010 .018 

Note. c = cluster size. deff = design effect.  
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Table 2 

Percentage Relative Bias of the Estimated Standard Errors for the Level-1 Regression Coefficient (γ10) Ignoring Clustered Structures.  

  Model 1 Model 2 Model 3 

  deff deff deff 

n c 1.1 1.5 1.9 1.1 1.5 1.9 1.1 1.5 1.9 

20 2 −5.1 −5.7 −5.3 −6.1 −7.0 −7.2 −9.9 −22.2 −29.0 

 3 −3.5 −3.3 −2.8 −5.3 −5.2 −5.0 −8.2 −19.4 −26.4 

 5 −0.6 −0.9 −1.1 −2.4 −2.3 −2.4 −3.2 −12.8 −20.0 

 10 −0.3 −0.6 −0.8 0.8 0.9 1.0 −3.8 −12.2 −18.8 

 50 −0.9 −0.9 −0.9 −0.1 −0.3 −0.5 −2.9 −11.9 −18.5 

30 2 −4.7 −3.9 −2.9 −2.6 −3.7 −5.6 −9.5 −21.9 −27.9 

 3 −1.0 −1.6 −1.8 −3.6 −3.9 −4.0 −5.1 −16.9 −24.2 

 5 −0.4 −0.6 −0.6 −0.4 −0.9 −1.3 −5.8 −15.9 −22.9 

 10 −0.6 −0.9 −1.1 0.3 0.2 0.3 −2.9 −11.9 −18.7 

 50 0.4 0.4 0.5 −1.1 −1.4 −1.5 −1.5 −10.5 −17.4 

50 2 −2.7 −2.8 −2.0 −2.6 −2.9 −4.8 −8.7 −22.6 −29.0 

 3 0.8 2.0 2.5 −3.4 −4.0 −4.2 −4.3 −16.7 −24.2 

 5 −0.8 −0.3 0.0 −1.1 −1.5 −1.8 −4.2 −15.7 −23.2 

 10 1.6 1.7 1.8 −0.2 −0.3 −0.3 −1.9 −10.8 −17.6 

 50 −1.2 −1.3 −1.3 −2.2 −2.2 −2.3 −2.8 −11.3 −17.8 

100 2 −1.2 −1.5 −2.1 −0.2 −2.4 −3.8 −8.7 −22.5 −28.4 

 3 1.7 1.6 1.4 −1.8 −2.3 −2.7 −4.2 −17.1 −24.7 

 5 −0.5 −0.9 −1.1 0.3 0.2 −0.1 −3.9 −15.3 −22.7 

 10 −1.3 −1.4 −1.5 −0.3 0.0 0.1 −2.8 −12.4 −19.4 

 50 −3.5 −3.6 −3.7 −2.0 −2.0 −2.0 −2.2 −10.8 −17.4 

Note. n = number of clusters. c = cluster size. deff = design effect. Model 1: random intercept model with ICC of X = 0; Model 2: ICC 

of X > 0 and X have both within- and between-level effects on Y; Mode 3: random coefficient model with ICC of X > 0 and the 

regression coefficients of X on Y varying across clusters.  Negative value indicates the percentage of underestimation. 
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Table 3 

Percentage Relative Bias of the Estimated Standard Errors for the Level-2 Regression Coefficient (γ01) Ignoring Clustered Structures.  

  Model 1 Model 2 Model 3 

  deff deff deff 

n c 1.1 1.5 1.9 1.1 1.5 1.9 1.1 1.5 1.9 

20 2 −11.9 −24.6 −33.6 −11.5 −25.3 −33.7 −8.7 −19.8 −26.6 

 3 −9.1 −22.6 −31.5 −9.3 −23.1 −32.3 −10.8 −23.3 −30.3 

 5 −5.2 −20.1 −29.8 −7.4 −22.3 −31.7 −9.4 −21.4 −29.3 

 10 −7.7 −20.6 −29.4 −7.0 −21.4 −30.8 −6.0 −19.8 −28.7 

 50 −8.9 −22.0 −30.6 −5.3 −19.4 −28.9 −6.8 −20.6 −29.5 

30 2 −7.4 −21.6 −31.0 −10.1 −23.7 −32.3 −7.2 −19.7 −26.6 

 3 −9.8 −24.6 −33.4 −8.0 −21.0 −29.9 −9.9 −21.6 −28.4 

 5 −2.9 −17.3 −26.9 −6.4 −21.2 −30.7 −7.2 −19.5 −27.6 

 10 −6.3 −19.9 −28.9 −7.7 −21.7 −30.8 −6.7 −20.6 −29.3 

 50 −7.3 −21.0 −29.9 −2.4 −17.6 −27.5 −7.7 −20.4 −28.8 

50 2 −6.8 −19.3 −28.2 −6.0 −20.0 −29.5 −5.6 −18.0 −24.8 

 3 −8.2 −23.1 −31.9 −4.2 −18.0 −27.4 −10.4 −21.3 −27.6 

 5 −4.7 −18.9 −28.3 −6.7 −21.1 −30.3 −6.8 −18.6 −26.4 

 10 −5.7 −18.6 −27.3 −6.1 −20.6 −30.0 −4.8 −19.2 −28.1 

 50 −5.8 −18.9 −27.7 −4.6 −19.3 −28.8 −5.8 −19.3 −28.1 

100 2 −4.4 −17.5 −26.8 −1.7 −16.4 −26.5 −6.1 −17.0 −23.3 

 3 −7.3 −20.8 −29.2 −4.2 −18.7 −28.1 −7.2 −19.6 −26.3 

 5 −5.4 −19.3 −28.4 −9.0 −22.0 −30.4 −3.7 −17.2 −25.6 

 10 −7.0 −19.9 −28.4 −5.6 −19.7 −29.0 −3.8 −18.0 −26.9 

 50 −4.9 −19.4 −28.8 −5.1 −19.6 −29.1 −7.9 −20.6 −29.1 

Note. n = number of clusters. c = cluster size. deff = design effect. Model 1: random intercept model with ICC of X = 0; Model 2: ICC 

of X > 0 and X have both within- and between-level effects on Y; Mode 3: random coefficient model with ICC of X > 0 and the 

regression coefficients of X on Y varying across clusters. Negative value indicates the percentage of underestimation. 

 

  



DESIGN EFFECT SMALLER THAN TWO  31 

 

Table 4 

Percentage Relative Bias of the Estimated Standard Errors for the Level-2 Intercepts (γ00) Ignoring Clustered Structures.  

  Model 1 Model 2 Model 3 

  deff deff deff 

n c 1.1 1.5 1.9 1.1 1.5 1.9 1.1 1.5 1.9 

20 2 −9.1 −21.7 −30.8 −6.8 −20.4 −30.7 −7.1 −19.6 −26.4 

 3 −8.6 −22.7 −31.9 −5.9 −20.5 −30.1 −10.5 −22.7 −29.9 

 5 −5.9 −20.0 −29.4 −3.9 −19.0 −28.8 −5.2 −18.1 −26.4 

 10 −6.8 −20.5 −29.4 −5.5 −20.3 −29.7 −7.8 −19.4 −27.4 

 50 −7.5 −20.5 −29.2 −3.2 −18.4 −28.3 −5.2 −18.7 −27.6 

30 2 −8.2 −21.8 −30.7 −5.8 −19.8 −29.8 −7.3 −20.5 −27.2 

 3 −6.5 −21.1 −30.5 −6.3 −20.3 −29.4 −6.2 −18.6 −26.2 

 5 −6.6 −20.7 −29.9 −5.6 −19.8 −29.4 −3.4 −17.2 −25.8 

 10 −7.4 −20.5 −29.2 −7.1 −21.3 −30.4 −6.2 −18.4 −26.7 

 50 −6.6 −19.7 −28.6 −3.5 −18.3 −27.9 −5.2 −18.7 −27.6 

50 2 −7.2 −19.2 −27.1 −5.3 −18.8 −28.9 −6.1 −17.1 −23.1 

 3 −6.7 −19.9 −28.9 −5.8 −20.0 −29.1 −4.8 −16.6 −24.5 

 5 −8.2 −20.5 −29.1 −4.5 −18.5 −28.1 −3.2 −16.2 −24.7 

 10 −6.6 −20.4 −29.5 −4.4 −19.7 −29.4 −6.5 −18.6 −26.9 

 50 −6.8 −19.8 −28.5 −5.0 −19.6 −29.2 −4.8 −18.2 −27.2 

100 2 −8.8 −20.1 −27.7 −4.4 −18.1 −28.1 −7.1 −17.4 −23.3 

 3 −6.4 −19.4 −28.3 −4.6 −18.0 −27.0 −5.2 −17.6 −25.2 

 5 −7.9 −20.5 −29.2 −2.7 −16.4 −26.0 −4.6 −17.6 −25.9 

 10 −5.9 −19.9 −28.9 −4.3 −18.8 −28.3 −4.8 −18.5 −27.1 

 50 −5.7 −19.2 −28.0 −4.6 −18.4 −27.8 −4.1 −17.4 −26.3 

Note. n = number of clusters. c = cluster size. deff = design effect. Model 1: random intercept model with ICC of X = 0; Model 2: ICC 

of X > 0 and X have both within- and between-level effects on Y; Mode 3: random coefficient model with ICC of X > 0 and the 

regression coefficients of X on Y varying across clusters.  Negative value indicates the percentage of underestimation. 

 

 

  



DESIGN EFFECT SMALLER THAN TWO  32 
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b) 

   
 

 

c) 

 
Figure 1. Multilevel path diagram for the data generation of (a) Model 1: random intercept 

model with ICC of X = 0; (b) Model 2: ICC of X > 0 and X have both within- and between-level 

variances; and (c) Mode 3: random coefficient model with ICC of X > 0 and the regression 

coefficients of X on Y varying across clusters (i.e., τ11).  

 


